Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.
An improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have b
Microbial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex
... Show MoreAn efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols i
... Show MoreThe research aims to use performance indicators and financial criteria in evaluating the economic feasibility of the company's insurance portfolios. In addition to identifying the strengths and weaknesses in portfolio's performance to enhance the strengths and address the weaknesses. This is consistent with research problem that dealt with the performance indicators, economic feasibility of company's portfolios and contributing to their improvement, reducing the financial and insurance risks associated with company's business. The research’ sample is represented by the Iraqi Insurance Company as it is one of the oldest financial institutions operating in the insurance sector. It has identified (5) insurance portfolios (marine, engineer
... Show Morebjective researcher through this research to Put a theoretical framework to strategic orientation the center on the market in the business and the diagnosis and interpretation of the nature of the link between relationships and influencing strategic orientation dimensions Almtmthelh organizations (Entrepreneurial Orientation, market Orientation, Interaction Orientation) and the performance of the Iraqi Private Banks The research community and the level of dimensional and through the use of scale (Balanced Scorecard) Bmnzawradtha the four, the test of this research in the Iraqi banking sector (Gulf Commercial Bank
... Show MoreSix house-hold Abyssinian pumps distributed in different villages of Mansoura (Mans-I, Mans-II and Mans-III) and Talkha (Talk-I, Talk-II and Talk-III) cities, Egypt, have been selected for regular seasonal water quality assessment during 2017. Water samples have been collected within the mid-periods of four seasons Standard assessment tools were employed for the integrated water quality assessment including Water Quality Index (WQI) and ISO standard algal toxicity test. WQI displayed remarkable local and seasonal variations with excellent (≥ 90) and good (70 - 89) only recorded for water samples collected from Mans-I pump located in sparsely populated area and far 50 meters only from the eastern (Damietta) branch of Nile River. WQI of
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreCopper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.