Objective(s): The world of dentistry is constantly evolving, and with the advent of 3D printing technology, the possibilities are endless. However, little is known about the effects of adding ZrO2 NPs to the denture base resin of 3D additive manufacturing technique.Aim of this study is to evaluate the behavior of resin which is used to 3D printing of denture base with the addition of ZrO2 NPs on denture adaptation property and diametral compression strength.Methods: 60 samples were printed, 30 disks for diametral compressive test and 30 denture base for denture adaptation test. Three groups per test (n=10). The control group for each test included unreinforced 3Dprinted denture base resin, and the other groups were reinforced with (2&3%) nanoZrO2; diametral compressive strength was evaluated using universal compressive testing machine, while denture adaptation was evaluated by exocad software program.Results: the study reveals significant difference in both diametral compressive strength and denture adaptation of the 3Dprinted denture base resin after adding nanoZrO2, as denture adaptation increased; the mean of diametral compression was decreasing with 2%&3% percent of ZrO2 NPs.Conclusions: addition of Zro2 NPs to 3D printed denture base resin may help in improving the material behavior as concerning mechanical and adaptation properties.
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non‐epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co‐culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenot
The Video effect on Youths Value
A new, simple, accurate, fast and sensitive spectrophotometric method has been
developed for the analysis of Pyrocatechol, Resorcinol, and pyrogallolin pure
commercial samples by continuous flow injection analysis. The method was based on
the oxidation of the organic compounds with Ce(IV)sulfate in acidic medium to
formed a brown colored species which determined using homemade Ayah 3SBGR x3-
3D solar cell flow injection microphotometer. Optimum conditions were obtained
using a high intensity green light emitted diode as an irradiation source
forPyrocatechol, Resorcinol, whileblue light emitted diode as an irradiation source for
pyrogallol. The linear dynamic range for the instrument response versus Pyrocatechol,
The aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
Charge extraction layers play a crucial role in developing the performance of the inverted organic solar cells. Using a transparent metal oxide with appropriate work function to the photoactive layer can significantly decrease interface recombination and enhance charge transport mechanism. Therefore, electron selective films that consist of aluminium-doped titanium dioxide (TiO2:Al) with different concentrations of Al (0.4, 0.8, and 1.2)wt % were prepared using sol-gel technique. The inverted organic solar cells PCPDTBT: PCBM with Al doped TiO2 as electron extraction layer were fabricated. It is well known that Al doping concentration potentially affects the physical characteristics of the TiO2 by control
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreVitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show More