Objective(s): The world of dentistry is constantly evolving, and with the advent of 3D printing technology, the possibilities are endless. However, little is known about the effects of adding ZrO2 NPs to the denture base resin of 3D additive manufacturing technique.Aim of this study is to evaluate the behavior of resin which is used to 3D printing of denture base with the addition of ZrO2 NPs on denture adaptation property and diametral compression strength.Methods: 60 samples were printed, 30 disks for diametral compressive test and 30 denture base for denture adaptation test. Three groups per test (n=10). The control group for each test included unreinforced 3Dprinted denture base resin, and the other groups were reinforced with (2&3%) nanoZrO2; diametral compressive strength was evaluated using universal compressive testing machine, while denture adaptation was evaluated by exocad software program.Results: the study reveals significant difference in both diametral compressive strength and denture adaptation of the 3Dprinted denture base resin after adding nanoZrO2, as denture adaptation increased; the mean of diametral compression was decreasing with 2%&3% percent of ZrO2 NPs.Conclusions: addition of Zro2 NPs to 3D printed denture base resin may help in improving the material behavior as concerning mechanical and adaptation properties.
In the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreBackground: This study aimed to evaluate the effect addition of polyester fibers on the some mechanical properties of heat cured acrylic resin (implant strength, flexural strength and hardness) Materials and methods: Ninety specimens were used in the study. Thirty specimens were used for impact strength measurements (80mm X 10mm X 4mm) length, width and thickness respectively. The specimens divided into three test groups (n=10), first group formed from heat cure acrylic resin without fiber reinforcement. Second group was formed from heat cure acrylic resin was reinforced with 2 mm length polyester fiber and third group was formed from heat cure acrylic resin reinforced with 4mm length polyester fiber, impact strength measured by impact test
... Show MoreBackground: this study aimed to evaluate the effect of addition of hydroxyapatite micro filler in three concentrations (5%, 10%, 15%) on surface roughness, impact strength, flexural strength and hardness. Material and methods: One hundred sixty acrylic samples were used in this study,40 samples were used for each test(impact strength ,flexural strength ,hardness and surface roughness).The test group divided into four subgroups(n=10) for controlgroup,5%,10% ,15%H,A.concentration addition groups .Impact testing device, flexural strength testing device, shore hardness tester and profilometer device were used to measure the four tests examined in this study. Results: the results showed a significant increase in impact strength, hardness in all
... Show MoreBackground: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safet, IJSR, Call for Papers, Online Journal
Back ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical c
... Show MoreThis research studyies the effect of MgO and ZrO2 as additives in sintering Al2O3 . The experimental results are modeled using ( L2 _ regression) technique , sintered density and grain size rate measurments were accounted by utilizing experimental results of undoped , MgO doped and ZrO2 doped alumina impregrated with spherical large pores in final stage of sintering . The effect of each additive is inhibitian of the grain growth and increasing the densification rate which enhances the kinietics of densification and the removal of large and small pores.
Background: This study was formulated to compare the effect of 5%hydrofluoric acid in comparison to 37%phosphoric acid with and without the application of silane on bond strength of composite to porcelain. Materials and Methods: Specimen preparation was divided in to two phases, metal-disks fabrication (8mm-diameter and 4mm-thickness) and ceramic veneering. Thirty two specimens were prepared, sandblasted with 50 μm aluminum oxide, and divided into four groups of eight samples. Groups I and III were etched with 37%phosphoric acid while groups II and IV were etched with 5%hydrofluoric acid; and groups I and II were silaneted while groups III and IV were not. Heliobond, and resin composite were applied to each specimen using a plastic transpa
... Show More