In this research investigation, a total of eighteen diverse tetra- and penta-lateral cyclic compounds were synthesized. These included 1,3,4-thiadiazole, thiazolidin-4-one (via an alternative method), 1,2,4-triazole, carbothioamide, thiazole-4-one, azetidin-2-one, and oxazole. The synthesis procedure entailed a sequence of reactions. The thiazolidine-4-one 1 was obtained by reaction p-aminobenzoic acid with thiosemicarbazide, followed by treatment with p-tolualdehyde to produce Schiff base 2. Reaction Schiff base 2 with mercaptoacetic acid in dry benzene was carried out to produce thiazolidine-4-one 3. In another synthesis pathway, the esterification of p-nitro benzoic acid with ethanol in the presence of sulfuric acid was obtained to formation of compound 4. Compound 4 was subsequently reacted with thiosemicarbazide, yielding compound 5. Cyclization of compound 5 was then achieved using 4% sodium hydroxide solution. This formed the 1,2,4-triazole heterocycle, designated compound 6. Thiosemicarbazone 7-9 were prepared by reaction of thiosemicarbazide with different aldehydes. Additionally, 2-substituted-1,3-thiazolidine-4-one derivatives 10-12 were synthesized through the reaction of thiosemicarbazone with chloroacetic acid in the presence of anhydrous sodium acetate. The Oxazole derivative 15 was obtained through a series of reactions starting with the reaction of p-amino benzoic acid with ethyl chloroacetate, resulting in compound 13. Compound 13 was then treated with urea to obtain compound 14, followed by a reaction with 4-phenyl phenacyl bromide to yield the final product, the Oxazole derivative 15. The 2-aminooxadiazole derivative 16 was synthesized by reaction urea with 4-bromoacetophenone which was reacted with 4-bromobenzaldehyde to produce Schiff base derivative 17. Finally, β-lactam 18 is obtained through reaction Schiff base with chloroacetyl chloride in the presence of triethyl amine. FT-IR, 1H-NMR, and 13C-NMR spectroscopy were used to confirm their proposed structures. Moreover, the antibacterial and antifungal activities of certain synthesized compounds, specifically 2,3,6,11,13,15,17, and 18, were assessed against Staphylococcus aureus, Escherichia coli, and Candida albicans, demonstrating encouraging outcomes.Keywords: Antibacterial, antifungal activity, oxadaizole, heterocyclic derivatives, Oxazole.
In this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreDiscotic liquid crystal compounds were synthesized and characterized. Liquid crystalline texture of these compounds was investigated by polarized optical microscopy (POM). The Hartree-Fock approximation (HF) was used to calculate theoretical molecular parameters for synthesized compounds such as optimization, hardness, EHOMO, ELUMO, and energy gap using the Gaussian 09W program.
Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.
A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR
Till now, isatin derivatives have received a lot of interest in organic and medicinal chemistry due to their significant biological and pharmacological activities. Schiff’s and Mannich bases of isatins are an effective group of heterocyclic derivatives that play a significant role in medicinal chemistry as antimicrobial agents. In light of these facts, new Schiff bases and Mannich bases of isatin were synthesized. The monomer Mannich bases; 3(a-e) have been synthesized by reacting isatin with different secondary amines, piperidine, morpholine, and pyrrolidine, dimethylamine, diphenylamine, separately, and formaldehyde, while the dimer (5) formed by using piperazine and formaldehyde which then react separately with Phenylhydrazine
... Show MoreAll new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show MoreThe New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.