In this research investigation, a total of eighteen diverse tetra- and penta-lateral cyclic compounds were synthesized. These included 1,3,4-thiadiazole, thiazolidin-4-one (via an alternative method), 1,2,4-triazole, carbothioamide, thiazole-4-one, azetidin-2-one, and oxazole. The synthesis procedure entailed a sequence of reactions. The thiazolidine-4-one 1 was obtained by reaction p-aminobenzoic acid with thiosemicarbazide, followed by treatment with p-tolualdehyde to produce Schiff base 2. Reaction Schiff base 2 with mercaptoacetic acid in dry benzene was carried out to produce thiazolidine-4-one 3. In another synthesis pathway, the esterification of p-nitro benzoic acid with ethanol in the presence of sulfuric acid was obtained to formation of compound 4. Compound 4 was subsequently reacted with thiosemicarbazide, yielding compound 5. Cyclization of compound 5 was then achieved using 4% sodium hydroxide solution. This formed the 1,2,4-triazole heterocycle, designated compound 6. Thiosemicarbazone 7-9 were prepared by reaction of thiosemicarbazide with different aldehydes. Additionally, 2-substituted-1,3-thiazolidine-4-one derivatives 10-12 were synthesized through the reaction of thiosemicarbazone with chloroacetic acid in the presence of anhydrous sodium acetate. The Oxazole derivative 15 was obtained through a series of reactions starting with the reaction of p-amino benzoic acid with ethyl chloroacetate, resulting in compound 13. Compound 13 was then treated with urea to obtain compound 14, followed by a reaction with 4-phenyl phenacyl bromide to yield the final product, the Oxazole derivative 15. The 2-aminooxadiazole derivative 16 was synthesized by reaction urea with 4-bromoacetophenone which was reacted with 4-bromobenzaldehyde to produce Schiff base derivative 17. Finally, β-lactam 18 is obtained through reaction Schiff base with chloroacetyl chloride in the presence of triethyl amine. FT-IR, 1H-NMR, and 13C-NMR spectroscopy were used to confirm their proposed structures. Moreover, the antibacterial and antifungal activities of certain synthesized compounds, specifically 2,3,6,11,13,15,17, and 18, were assessed against Staphylococcus aureus, Escherichia coli, and Candida albicans, demonstrating encouraging outcomes.Keywords: Antibacterial, antifungal activity, oxadaizole, heterocyclic derivatives, Oxazole.
Many new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII]a, b and [VIII]a,b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII]a,b, [VIII]a,b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX]a,b and [X]a-d). Finally, the new derivatives [XI]a-c run out via the reacted compound [IX]a with di
A new ligand complexes have been synthesis from reaction of metal ions of MnII , CoII , NiII , CuII , ZnII , CdII and PdII with schiff base [(E)-1-((2-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-4-ylimino) methyl) naphthalen-2-ol [HL)]. The prepared [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H13CNMR spectra Mass spectra and melting point. The compounds were characterized by techniques UV-Vis and FT-IR spectral studies, micro analysis (C.H.N), determination of atomic absorption, chloride content, molar conductivity measurements, magnetic susceptibility and melting point. The ligand acts as a monobasic tridentate, coordinating through deprotonated phenolic O and azomethine N atoms. The compounds are neutral electrolytic in dimeth
... Show MoreIn present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MoreThis work comprises the synthesis of 18 new N- substituted 5,10-
dihydrophenophosphazine.The diphenylamine was chosen as the starting material ,
which was reacted with phosphorus trichloride at elevated temperature (200-220)0C
for 6 hrs, followed by treating the reaction mixture with water to yield 5,10-
dihydrophenophosphazine-10-oxide(1), this was reacted with ethylchloroacetat to
obtain ethyl(5,10-dihydrophenophosphazine-10- oxide)acetate(2). Compound (2)
was converted to acid hydrazide by treating with hydrazine hydrate( 98% ) to obtain
5-(5,10-dihydrophenophosphazine) acetohydrazide-10-oxide (3). The acid hydrazid
was used to react with phenylisocyanat , phenylthioisocyanat to give (4,7)
respectively which
The synthesis of the MBIB ligand by the reaction of the BIB ligand with methionine in 1:1 ratio, and the metal complexes with Ni(II), Cu(II), and Pt(IV) were described. All synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, UV-VIS, thermal analysis (TG and DSC), atomic absorption (AAS), elemental microanalysis (C.H.N.S), melting point (m.p.), magnetic susceptibility, molar conductivity measurements, and chloride content. All the complexes were electrolytes, and the suggested geometric shapes for the complexes were octahedral. The magnetic properties of the platinum complex were diamagnetic, while those of the nickel and copper complexes were paramagnetic. All synthes
... Show MoreIn this work, some new pyrazole derivatives were prepared through the reaction of the diazonium salt of metoclopramide with acetylacetone to give 5-chloro-N-(2-(diethylamino)ethyl)-4-((2,4-dioxopentan-3-yl) diazenyl)-2-methoxybenzamide (1) in 80% yield. Compound 1 was then reacted with some hydrazine derivatives to afford the corresponding pyrazole derivatives in 75-93% yields. Some new azo compounds (6-10) were also prepared in 77-95% yields by treatment of the diazonium salt of metoclopramide with some phenol and aniline derivatives. The prepared compounds were characterized using FT-IR and 1H NMR spectroscopy. Some of these compounds were
... Show More(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show MoreNine new compounds of 2-amino-5-chlorobenzothiazole derivatives were synthesized. These new compounds were formed through the reaction of 2-amino-5-chlorobenzothiazole 1 with ethyl chloroacetate and KOH, which gave an ester derivative 2, followed by refluxing compound 2 with hydrazine hydrate to afford hydrazide derivative 3. The reaction of compound 3 with CS2 and KOH gave 1,3,4-oxadiazole-2-thiol derivative 4, and then the reaction of compound 2 with thiosemicarbazide to produce compound 5 then treated it with 4%NaOH led to ring closure to provide 1,2,4-triazole-3-thiol derivative
... Show More