Preferred Language
Articles
/
GxdBzY0BVTCNdQwC9xw-
Collocation Networks of Selected Words in Academic Writing: A Corpus-Based Study
...Show More Authors

This study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writers from different countries around the world. This corpus-based study aims at examining the significance of chunks of language in texts. The concept of collocations is crucial in corpus linguistics to identify semantic relations. This can help in the teaching and learning processes. Furthermore, this study is conducted to answer the following research questions; first, whether the three words study, paper, and research are used interchangeably in the corpora or not? Second, what are the shared collocational associations surrounding the selected nodes? Finally, it is worth noting that the study of collocations highlights the linguistic features of texts through computational analytical tools that can save time and help to gain objective results systematically. The findings show that ‘research’ and ‘study’ are used rather interchangeably in the writing of the abstracts; however, ‘paper’ has fewer shared collocations in the same academic context.

Clarivate Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
A New Feature-Based Method for Similarity Measurement under the Linux Operating System
...Show More Authors

This paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (4)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Effect of Environmental Factors on the Accuracy of a Quality Inspection System Based on Transfer Learning
...Show More Authors

In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo

... Show More
Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 13 2021
Journal Name
Molecular Crystals And Liquid Crystals
Liquid crystal behavior of Ag(I) complexes based on a series of mesogenic 1,3,4-thiadiazole ligands
...Show More Authors

View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Ingénierie Des Systèmes D Information
Performance Evaluation of a Multi Organizations Secure Internet of Vehicles Based on Hyperledger Fabric Blockchain Platform
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Synthesis, Characterizations, and Recent Applications of the Silica-based Mobil Composition of Mesoporous Material: A Review
...Show More Authors

Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,

... Show More
View Publication Preview PDF
Crossref