The study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries. Finally, and according to the antibiotic feature of Schiff bases and its minerals, we have also examined such character against (-Bacteria and +Bacteria) giving an acceptable inhibition efficiencies.
In this work, novel compounds of hydrazones derived from (2,4-dinitrophenyl) hydrazine were synthesized. Benzamides derivatives and sulfonamides derivatives were prepared from p-amino benzaldehyde. Then these compounds were condensed with (2,4-dinitrophenyl) hydrazine through Imine bond formation to give hydrazones compounds. The compounds were characterized using FT-IR (IR Affinity-1) spectrometer, and 1HNMR analyses. The majority of the compounds have a moderate antimicrobial activity against “Gram-positive bacteria staphylococcus Aureus, and staphylococcus epidermidis, Gram-negative bacteria Escherichia coli, and Klebsiella pneumoniae, and fungi species Candida albicans” using concentrations of 250 µg\ml.
2- amino -5- thiol-1,3,4- thiadiazole (S1) was prepared by cyclic locking of thiosemicarbazide in the presence of anhydrous sodium carbonate and CS2. diazotization of (S1) compound gave diazonium salt (S2) that reacts with different activated aromatic compounds to get the following azo compounds ,2 [(4- aminophenyl) diazenyl ] 1,3,4- thiazdiazole-5- thiol (S3) ,2-[4-amino- 1-naphthyl diazenyl] -1,3,4 – thiazdiazole-5-thiol (S4) , 3-amino-4-[(5- mercapto -1,3,4- thiadiazole -2-yl) diazenyl ] phenol(S5) ,1-[(5-mercapto-1,3,4-thiadiazole-2-yl) diazenyl] -2-naphthol (S6) , 5-{[4-(dimethylamino) phenyl] diazenyl}-1,3,4-thiadiazole-2- thiol(S7) ,5-{[4-(diethylamino) phenyl] diazenyl}-1,3,4- thiadiazole-2- thiol(S8) ,2- amino-5-[(5-mercapto-1,3
... Show MoreThis study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the
... Show MoreBackground: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreIn this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prep
... Show More