The current paper focuses on the studying the forms of (even-even) nuclei for the heavy elements with mass numbers in the range from (A=226 - 252) for isotopes. This work will consist of studying deformation parameters which is deduced from the "Reduced Electric Transition Probability" which is in its turn dependent on the first Excited State . The "Intrinsic Electric Quadrupole Moments" (non-spherical charge distribution) were also calculated. In addition to that the Roots Mean Square Radii (Isotope Shift) are accounted for in order to compare them with the theoretical results.
The difference and variation in shapes of nuclei for the selected isotopes were detected using &
... Show MoreThe quote of a Canadian communication scientist (Marshall McLuhan) (“The world has become an electronic village”) has become an archaic information compared to the great and rapid development of communication in the last two decades of the 20th century and what will happen later in the 21st century, to the extent that the world is called, thanks to the internet, a “Small screen” and this fact is a sign of the great progress that has been made in this field. As for the other statement of the Canadian communication scientist mentioned before “the medium itself, is the message”, it has been renewed and developed in its meaning and it’s purpose. Each new technical development in the means of communication necessarily means a me
... Show MoreIn this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
The survey and checklist of invasive species of the insects in some different localities of Iraq are revised; 24 invasive species were documented until December 2018 during the current investigations. The species distributions, common names and synonyms are given.
The current investigation included all of exotic species in Iraq, which are not collected during this study.
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
Numerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
ABSTRACT Fifty extremely halophilic bacteria were isolated from local high salient soils named Al-Massab Al-Aam in south of iraq and were identified by using numerical taxonomy. Fourty strains were belong to the genus Halobacterium which included Hb. halobium (10%). Hb. salinarium (12.5%), Hb.cutirubrum (17.5%), Hb-saccharovorum (12.5%), Hb. valismortis (10%) and Hb. volcanii (37.5%). Growth curves were determined. Generation time (hr) in complex media and logarithmic phase were measured and found to be 10.37±0.59 for Hb. salinarium. 6.49 ± 0.24 for Hb.cutirubrum. 6.70±0.48 for Hb-valismonis, and 11.24 ± 0.96 for Hb. volcanii
The problem of water scarcity is becoming common in many parts of the world, to overcome part of this problem proper management of water and an efficient irrigation system are needed. Irrigation with a buried vertical ceramic pipe is known as a very effective in the management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the HYDRUS/2D software. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions. Different value
... Show More