As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen peroxide (H2 O2 ). The influence of operation parameters (current density, electrolysis time, and GAC) on catalytic performance will be studied, which will be adjusted by the response surface methodology (RSM). The pH was adjusted to 3, and the airflow was set to 10 L/h. According to the results the nickel foam was an excellent cathode material choice. The best conditions for phenol elimination were at current density of 3.56 mA/cm2 , FeSO4 .7H2 O dosage of 0.1 mM, GAC of 30 g, and a time of 3 h to attain the removal rates of phenol and chemical oxygen demand (COD) of 98.79% and 93.01%, respectively. The results showed that time had a higher effect on the phenol and COD removal efficiency, while the impact of current density was lower. The model equation’s high R2 value (97.90%) demonstrates its suitability.
This research presents a response surface methodology (RSM) with I‐optimal method of DESIGN EXPERT (version 13 Stat‐Ease) for optimization and analysis of the adsorption process of the cyanide from aqueous solution by activated carbon (AC) and composite activated carbon (CuO/AC) produced by pyro carbonic acid microwave using potato peel waste as raw material. Pyrophosphate 60% (wt) was used for impregnation with an impregnation ratio 3:1, impregnation time of 4 h at 25°C, radiant power of 700 W, and activation time of 20 min. Batch experiments were conducted to determine the removal efficiency of cyanide from aqueous solution to evaluate the influences of various experimental parameters su
Electrocoagulation is an electrochemical process of treating polluted water where sacrificial anode corrodes to produce active coagulant (usually aluminum or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles). The present study investigates the removal of phenol from water by this method. A glass tank with 1 liter volume and two electrodes were used to perform the experiments. The electrode connected to a D.C. power supply. The effect of various factors on the removal of phenol (initial phenol concentration, electrode size, electrodes gab, current density, pH and treatment time) were studied. The results indicated that the removal efficiency decreased as initial phenol concentration
... Show MoreThe regression analysis process is used to study and predicate the surface response by using the design of experiment (DOE) as well as roughness calculation through developing a mathematical model. In this study; response surface methodology and the particular solution technique are used. Design of experiment used a series of the structured statistical analytic approach to investigate the relationship between some parameters and their responses. Surface roughness is one of the important parameters which play an important role. Also, its found that the cutting speed can result in small effects on surface roughness. This work is focusing on all considerations to make interaction between the parameters (position of influenc
... Show MoreIn this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreActivated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
Light naphtha one of the products from distillation column in oil refineries used as feedstock for gasoline production. The major constituents of light naphtha are (Normal Paraffin, Isoparaffin, Naphthene, and Aromatic). In this paper, we used zeolite (5A) with uniform pores size (5Aº) to separate normal paraffin from light naphtha, due to suitable pore size for this process and compare the behavior of adsorption with activated carbon which has a wide range of pores size (micropores and mesopores) and high surface area. The process is done in a continuous system - Fixed bed reactor- at the vapor phase with the constant conditions of flow rate 5 ml/min, temperature 180oC, pressure 1.6 bar and 100-gram weight o
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microsc
... Show More

