Preferred Language
Articles
/
Gob8o4YBIXToZYALV5wU
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 25 2015
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Fri Sep 30 2016
Journal Name
Al-khwarizmi Engineering Journal
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique
...Show More Authors

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 01 2010
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

Publication Date
Sun Jun 05 2022
Journal Name
Sport Tk-revista Euroamericana De Ciencias Del Deporte
Visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball
...Show More Authors

The primary aim of this research was to study visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball. A total of 20 volleyball players of Baghdad participated in this study. The sample was homogeneous in terms of height, weight and age of the players. The tests used in the present study were: 1) Visual Spatial Attention Test. 2) Volleyball Spike Test. Based on the findings of the study, the researcher concluded that visual spatial attention has a significant impact on the accuracy of the diagonal spike in volleyball.

View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Ieee Transactions On Network Science And Engineering
A Resource Allocation Mechanism for Cloud Radio Access Network Based on Cell Differentiation and Integration Concept
...Show More Authors

View Publication
Crossref (16)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (9)
Crossref