Advancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by replacing a specified quantity of bentonite with a small fraction of cellulose nanoparticles (CNPs), including cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The concentration of CNPs was changed from 0.15 wt% up to 0.60 wt% and the bentonite content was reduced from 6 to 0 wt%, which leads to a reduction of solid contents from 13.34 to 6.71 wt%. The flow-loop experiments were accomplished on a sophisticated purpose-built flow rig by circulating the tested fluid samples into the test section in a horizontal position, considering the influence of drill pipe rotation, flow rates, cuttings sizes, and drill pipe eccentricity. The results show that the low solid fluids displayed a considerable enhancement in cuttings removal efficiency, especially with 0.15 wt% of the concentration CNPs and 4.5 wt% of the bentonite contents. The morphology of CNPs played a vital role in improving the rheological properties of the water-based drilling fluids.
Municipal solid waste generation in Babylon Governorate is often affected by changes in lifestyles, population growth, social and cultural habits and improved economic conditions. This effect will make it difficult to plan and draw up future plans for solid waste management.In this study, municipal solid waste was divided into residential and commercial solid wastes. Residential solid wastes were represented by household wastes, while commercial solid wastes included commercial, institutional and municipal services wastes.For residential solid wastes, the relational stratified random sampling was implemented, that is the total population should be divided into clusters (socio-income level), a random sample was taken in e
... Show MoreLow-level microbial activity due to the production of organic acids is a recognized problem during the initial phase of food waste composting. Increasing such activity levels by adjusting the pH values during the initial composting phase is the primary objective to be investigated. In this study, sodium acetate (NaoAc) was introduced as an amendment to an in-vessel composting system. NaoAc was added when the pH of the compost mixture reached a low level (pH < 5), the addition increased pH to 5.8. This had a positive effect on the degradation of organic materials i.e. the formation of methane gas compared to the results without NaoAc addition.
The results also proved that anaerobic-aerobic in-vessel composting could reduce the
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreExploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
In the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The
... Show MoreWe have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
This study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of the
... Show MoreThe corrosion behavior of low carbon steel in washing water of crude oil solution has been studied potentiostatically at five temperatures in the range (30–70)°C .The corrosion potential shifted to more negative values with increasing temperature and the corrosion current density increased with increasing temperature. Folic acid had on inhibiting effect on the corrosion of low carbon steel in washing water at a concentration (5× 10-4-- 5× 10-3 ) mol/dm3 over the temperature range (30–70)°C. Values of the protection efficiency were calculated from the corrosion current density .From the general results for this study, it can be seen that thermodynamic and kinetic function were also calculated (?G, ?S, ?H and Ea )
... Show MoreThe Boltzmann equation has been solved using (EEDF) package for a pure sulfur hexafluoride (SF6) gas and its mixtures with buffer Helium (He) gas to study the electron energy distribution function EEDF and then the corresponding transport coefficients for various ratios of SF6 and the mixtures. The calculations are graphically represented and discussed for the sake of comparison between the various mixtures. It is found that the various SF6 – He content mixtures have a considerable effect on EEDF and the transport coefficients of the mixtures