Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show MoreImage quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreThe research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
Each sport has its own energy requirements that differ from the energy requirements of other sports, and a different method is used in each of them, so the trainer must first rely on the principle of privacy in training first, that is, privacy according to the working energy system, that is, he defines the controlling energy system In that event, and how the muscles use the available energy to perform according to the energy production systems. As we find the serving skill is the first volleyball skill with which the team starts the match in order to be able to gain points directly, through knowledge it turns out that there is a weakness in the skill performance, especially the skill of serving and being The key to victory for volle
... Show MoreThe feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec