This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%) at pH = 3 was 95.62% with an average energy consumption of 6.22 kWh/kg MO, which was achieved under maximal conditions of current density = 5.12 mA/cm2, mass of GAC = 3 g, and time = 20 min with small amounts of Fe2+ (0.124 mM), and Na2SO4 (0.02 M). Moreover, the present work investigated the effectiveness of 3D electro-Fenton assisted by ultrasound known as Sono-ElectroFenton (SEF), by following a new strategy based on applying the minimum circumstances of EF and comparing its results with that of SEF under the same conditions. MO Re% for EFmin was 49.24% while SEF was 50.51%, which is considered an exiguous improvement. However, using copper foam as a working electrode in the 3D EF system for the degradation of MO was an excellent choice. Furthermore, the suggested approach is characterized by simplicity, speed, and efficiency with a high percentage of pollutant removal, in addition to being eco-friendly.
The accurate 3-D coordinate's measurements of the global positioning systems are essential in many fields and applications. The GPS has numerous applications such as: Frequency Counters, Geographic Information Systems, Intelligent Vehicle Highway Systems, Car Navigation Systems, Emergency Systems, Aviations, Astronomical Pointing Control, and Atmospheric Sounding using GPS signals, tracking of wild animals, GPS Aid for the Blind, Recorded Position Information, Airborne Gravimetry and other uses. In this paper, the RTK DGPS mode has been used to create precise 3-D coordinates values for four rover stations in Baghdad university camp. The HiPer-II Receiver of global positioning system was used to navigate the coordinate value. The results wil
... Show MoreThe accurate 3-D coordinate's measurements of the global positioning systems are essential in many fields and applications. The GPS has numerous applications such as: Frequency Counters, Geographic Information Systems, Intelligent Vehicle Highway Systems, Car Navigation Systems, Emergency Systems, Aviations, Astronomical Pointing Control, and Atmospheric Sounding using GPS signals, tracking of wild animals, GPS Aid for the Blind, Recorded Position Information, Airborne Gravimetry and other uses. In this paper, the RTK DGPS mode has been used to create precise 3-D coordinates values for four rover stations in Baghdad university camp. The HiPer-II Receiver of global positioning system was used to navigate the
... Show MoreIn this paper activated carbon adsorbents produced from waste tires by chemical activation methods and application of microwave assisted KOH activation. The influence of radiation time, radiation power, and impregnation ratio on the yield and oil removal which is one of the major environmental issues nowadays and considered persistent environmental contaminants and many of them are suspected of being carcinogenic. Based on Box-Wilson central composite design, polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum conditions of 4 min radiation time, 700 W radiation power and 0.5 g/g impregnation ratio
... Show MoreSteady natural and mixed convection flow in a square vented enclosure filled with water-saturated aluminum metal foam is numerically investigated. The left vertical wall is kept at constant temperature and the remaining walls are thermally insulated. Forced convection is imposed by providing an inlet at cavity bottom surface, and a vent at the top surface. Natural convection takes place due to the temperature difference inside the enclosure. Darcy-Brinkman-Forchheimer model for fluid flow and the two-equation of the local thermal non-equilibrium model for heat flow was adopted to describe the flow characteristics within the porous cavity. Numerical results are obtained for a wide range of width of the inlet as a fraction
... Show MoreIn this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreThe removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models
... Show MoreThis investigation deals with the use of orange peel (OP) waste as adsorbent for removal of nitrate (NO3) from simulated wastewater. Orange peel prepared in two conditions dried at 60C° (OPD) and burning at 500 °C (OPB). The effect of pH: 2-10, contact time: 30- 180 min, sorbent weight: 0.5- 3.0 g were considered. The optimal pH value for NO3 adsorption was found to be 2.0 for both adsorbents. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Freundlich model was found to fit the equilibrium data very well with high-correlation coefficient (R2). The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2
... Show MoreA new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp
... Show More