The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
Argumentation is not a contemporary, yet a deep rooted intellectual phenomenon dates back to Romans and Greeks times. The argumentative elements ,the author is trying to convey to the reader, are linguistic procedures aim at persuading and being persuaded of what is true. The present study traces, through Camus’ novel The plague, the best method to construct argumentative techniques used to express the author’s deep philosophies.
Résumé
L’argumentation n’est pas un phénomène intellectuel nouveau, ses origines reviennent aux savants grecs et romains. Elle est une act
... Show MoreIt is often needed in demographic research to modern statistical tools are flexible and convenient to keep up with the type of data available in Iraq in terms of the passage of the country far from periods of war and economic sanctions and instability of the security for a period of time . So, This research aims to propose the use of style nonparametric splines as a substitute for some of the compounds of analysis within the model Lee-Carter your appreciation rate for fertility detailed variable response in Iraq than the period (1977 - 2011) , and then predict for the period (2012-2031). This goal was achieved using a style nonparametric decomposition of singular value vehicles using the main deltoid , and then estimate the effect of time-s
... Show MoreAbstract
Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the
... Show MoreWe have provided in this research model multi assignment with fuzzy function goal has been to build programming model is correct Integer Programming fogging after removing the case from the objective function data and convert it to real data .Pascal triangular graded mean using Pascal way to the center of the triangular.
The data processing to get rid of the case fogging which is surrounded by using an Excel 2007 either model multi assignment has been used program LNDO to reach the optimal solution, which represents less than what can be from time to accomplish a number of tasks by the number of employees on the specific amount of the Internet, also included a search on some of the
... Show MoreHospitals are part of the service organizations and most importantly at the level of individuals because they are tied to the people health and their daily lives , the nursing service is one of the important services provided by hospitals, and nurses are the human resource that offers this service, from this standpoint the idea of research came to prepare work Scheduling for nurses in a scientific way to improve performance operational for their services and provide efficient service available 24 hours a day, the research use one of the modern and scientific rules of scheduling its “schedule of
... Show MoreThe Quality function deployment (QFD) tool is an important tool of total quality management because its a link between two important parts customer and production process of the product, using advanced House of quality, which contributed to provide more details about improving the product before it had a vision for the future of the product be improved. Also the identification of the two competitors (Alwazeer , Altouri) bases on the survey of retailers which they identified five competitors products (Alwazeer , Altouri , Ferry , Jif , Dina)for the product (Zahi). Then House of quality to product (Zahi) has been developed By using a Kano Model to classify of customer's requirements for the
... Show MoreThis study focuses on the biodegradation of oxymatrine insecticide by some soil fungi isolated from four agriculture stations. The results showed that the highest degradation rate 94.66% was recorded by Ulocladium sp. at 10 days and A. niger recorded the lowest degradation rate 45.86%, while at 20 days Ulocladium sp. also showed the highest degradation rate 94.98% and the lowest degradation rate reached to 82.49% with A.niger. The mix (Exerohilum sp.+Ulocladium sp.) recorded the highest degradation rate of oxymatrine insecticide 90.22%, 88.51%, 85.34% at 4, 8 and 12 ppm.The use of mixed isolates enhanced the biodegradation process. There is no study of oxymatrine biodegradation
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More