Preferred Language
Articles
/
GheZh5IBVTCNdQwCRLMn
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.

Scopus Crossref
View Publication
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Wavelet Transform Filters Using Image Compression
...Show More Authors

        The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.

     The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.

   In our work PSNR is used as a measure of accuracy performanc

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Bio-inspired Computing – Theories And Applications
Image Segmentation Using Membrane Computing: A Literature Survey
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Sat Jun 01 2019
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchal Polynomial Coding of Grayscale Lossless Image Compression
...Show More Authors

Publication Date
Fri Jan 01 2016
Journal Name
Engineering And Technology Journal
Face Retrieval Using Image Moments and Genetic Algorithm
...Show More Authors

Publication Date
Wed Jul 06 2022
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression using Polynomial Coding Techniques: A review
...Show More Authors

Publication Date
Wed Jun 01 2022
Journal Name
V. International Scientific Congress Of Pure, Applied And Technological Sciences
Lightweight Image Compression Using Polynomial and Transform Coding
...Show More Authors

Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
EFFICIENCY SPIHT IN COMPRESSION AND QUALITY OF IMAGE
...Show More Authors

Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Proceedings Of International Conference On Data Science And Applications
Very Low Illumination Image Enhancement via Lightness Mapping
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-nahrain Journal Of Science
Medical Image Denoising Via Matrix Norm Minimization Problems
...Show More Authors

This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref