The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Abstract
The common types of movement disorders are ; dystonia which is a syndrome of repetitive muscle contractions. While , Huntington disease is autosomal dominant progressive neurodegenerative disorder, which is characterized by involuntary movements (“chorea”).
Tetrabenazine therapy has been shown to effectively control this movements compared with placebo.
Design the proper dosing approach for patients treated with tetrabenazine with genotype polymorphisms and their hepatic effect on patients.
A prospective case controlled study was carried on 50 patients whom divided into 2 groups :first group involved 25 patients who had cho
... Show MoreThe aim of this work is to study the correlation between the electrons for Li atom in ground state through the calculation of the inter-particle distribution function f (r12) and inter-particle expectation values . By using the f(r12) function for KL shell in both singlet and triplet state .The Fermi hole have been evaluated .In this work the Hartree-Fock wave function (1993) have been used.
Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreIn this paper activated carbon adsorbents produced from waste tires by chemical activation methods and application of microwave assisted KOH activation. The influence of radiation time, radiation power, and impregnation ratio on the yield and oil removal which is one of the major environmental issues nowadays and considered persistent environmental contaminants and many of them are suspected of being carcinogenic. Based on Box-Wilson central composite design, polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum conditions of 4 min radiation time, 700 W radiation power and 0.5 g/g impregnation ratio
... Show MoreNew Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic
... Show MoreThe question about the existence of correlation between the parameters A and m of the Paris function is re-examined theoretically for brittle material such as alumina ceramic (Al2O3) with different grain size. Investigation about existence of the exponential function which fit a good approximation to the majority of experimental data of crack velocity versus stress intensity factor diagram. The rate theory of crack growth was applied for data of alumina ceramics samples in region I and making use of the values of the exponential function parameters the crack growth rate theory parameters were estimated.
The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.