The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThis paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished
Objective: The objective of the study was to test the hypothesis, that umbilical cord blood crude serum applied topically with its high concentration of growth factors may promote an early healing for animal models with burn injury.
Methods: Fresh human umbilical cord blood UCBS was collected and screened for transmitted diseases such as hepatitis B, hepatitis C and HIV. Mice and rabbits were scalded by boiling water and chemical burning by NaOH, then treated with UCBS. In comparison with a Cetrimide treated group and a control group (without treatment). The UCBS was subjected to microbial testing to demonstrate the presence or absence of extraneous viable contaminating microorganisms.
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreThe wound healing process is incredibly intricate, consisting of a series of cellular activities. Although, this complex process has the potential to degenerate and result in chronic wound problems that are resistant to biological healing mechanisms. Nanoparticles can help to reduce inflammation, promote tissue regeneration, and accelerate wound healing. The proteolytic enzymes are believed to break down proteins and other molecules that can cause inflammation and impede the healing process. Wound was created in vivo using adult mice, and by taking blood samples the hematological parameters were evaluated to detected the effects of bromelain, silver nanoparticles and Br-AgNPs. The results shows an increased in white blood cells WBC, RBC, MC
... Show MoreBackground: Feeding is a complicated process that involves the coordination of cardiovascular, respiratory, gastrointestinal (GI), and oropharyngeal mechanisms, with support from the musculoskeletal and craniofacial systems. The practice of feeding could be correlated with eruption stage and nutritional status in infants. Aim of the study: This study aimed to assess the relation of feeding patterns to a selected oral variable (stage of the eruption of primary teeth) and growth parameters among clinically healthy infants. Subjects and Methods: A cross-sectional comparative study on a sample of (300) infants aged between 6 and 18 months was performed in Karbala City, Iraq. The feeding pattern was investigated using an information sheet ans
... Show MoreAbstract
In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethano
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreDue to the importance of the extraction process in many engineering and medical industries, in addition to great interest in medicinal plants, in this research, microwave-assisted extraction has been applied to extract some active compounds from Rosmarinus officinalis leaves. The optimal extraction conditions were then determined by calculating the ratio and extraction efficiency. The process has also been described through kinetic study by applying five kinetic models, the Hyperbolic diffusion model, Power low model, the First order reaction model, Elovich's model, and Fick's second law diffusion model and determining their compatibility with the studies operation, and determining the kinetic constants for each model. The result
... Show More