Preferred Language
Articles
/
GheZh5IBVTCNdQwCRLMn
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.

Scopus Crossref
View Publication
Publication Date
Sat Mar 31 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Process Variables, Adsorption Kinetics and Equilibrium Studies of Hexavalent Chromium Removal from Aqueous Solution by Date Seeds and its Activated Carbon by ZnCl2
...Show More Authors

The adsorption of hexavalent chromium by preparing activated carbon from date seeds with zinc chloride as chemical activator and granular date seeds was studied in a batch system. The characteristics of date seeds and prepared activated carbon (ZAC) were determined and found to have a surface area 500.01 m2/g and 1050.01  m2/g , respectively and  iodine number of 485.78 mg/g and 1012.91  mg/g, respectively. The effects of PH value (2-12), initial sorbate concentration(50-450mg/L), adsorbent weight (0.004-0.036g) and contact time (30-150 min) on the adsorption process were studied . For Cr(VI) adsorption on ZAC, at 120 min time contact, pH solution 2 and 0.02  adsorbent  weight  will ach

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Reliability and Failure Probability Functions of the m-Consecutive-k-out-of-n: F Linear and Circular Systems
...Show More Authors

The m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Al-rafidain Journal Of Computer Sciences And Mathematics
Braille Character Recognition System: Review
...Show More Authors

The Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition S

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (24)
Crossref
Publication Date
Wed Oct 05 2016
Journal Name
Anbar Journal Of Agricultural Sciences
Estimation of genetic parameters in cowpea
...Show More Authors

An experiment was carried out in the fields of Agriculture College-Baghdad University during spring and autumn of 2015 by using a randomized complete blocks design with three replications. The first season hybridization was established among three pure cultivars of cowpea (Vigna uniguiculata L.) which: Ramshorn, California black eye and Rahawya in full diallel crosses according to Griffing with first method and fixed model (3 parents+ 3 diallel hybrids +3 reciprocal hybrids) and a comparison experiment was in autumn season. The result of statistical analysis showed that there was a significant difference among the parents and their hybrids for all the studied characters. The parent 1 was the higher for root nodules number , leaf number, pod

... Show More
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Elastic magnetic electron scattering form factor in Ca-41 (M3Y fitting parameters consideration)
...Show More Authors

Elastic magnetic electron scattering form factors in Ca-41 have been investigated. 1f7/2 subshell has been adopted as a model space with one neutron, and Millinar, Baymann and Zamick 1f7/2 model space effective interaction (F7MBZ) has been used as a model space effective interaction to generate the model space vectors for the M1, M3, M5, M7, and total form factors. Discarded space (core and higher configuration orbits) have been included through the first order perturbation theory to couple the partice-hole pair of excitation with 2ћω excitation energy in the calculation of the form factors and regarding the realistic interaction density dependence M3Y as a core polarization interaction with five sets of modern fitting parameters. Fina

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Evaluation of petrophysical Properties of Zubair formation Luhais oil field Using Well Logging Analysis and Archie Parameters
...Show More Authors

well log analysis is used to determine the rock properties like porosity, water saturation, and shale volume. Archie parameters in Archie equation, which sometimes considered constants greatly affect the determination of water saturation, also these parameters may be used to indicate whether the rocks are fractured or not so they should be determined. This research involves well logging analysis for Zubair formation in Luhais field which involves the determination of Archie parameters instead of using them as constant.

The log interpretation proved that the formation is hydrocarbon reservoir, as it could be concluded from Rwa (high values) and water saturation values (low values), the lithology of Zubair from cro

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Impact of some environmental parameters on phytoplankton diversity in the eastern Al-Hammer marsh / southern Iraq
...Show More Authors

Biodiversity is one of the important biological factors in determining water quality and maintaining the
ecological balance. In this study, there are 223 species of phytoplankton were identified, and they are as
follows: 88 species of Bacillariophyta and were at 44%,70 species of Chlorophyta and they were at 29 %, 39
species of Cyanophyta and they were at 16 %, 12 species of Euglenozoa and they were at 4 %, four species of
Miozoa and they were at 3 %, and, Phylum Charophyta and Ochrophyta were only eight and two species,
respectively and both of them were at 2%. The common phytoplankton recorded in the sites studied
include Nitzschia palea, Scenedesmus quadricauda, Oscillatoria princeps, and Peridinium

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref