In this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.
Bioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas
... Show Morethe research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
This paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
In recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of al
... Show MoreA binary stream cipher cryptosystem can be used to encrypt/decrypt many types of digital files, especially those can be considered huge data files like images. To guarantee that the encryption or decryption processes need a reasonable time to encrypt/decrypt the images, so we have to make the stream cipher key generator that acts quickly without effect in the complexity or randomness of the output key binary sequences. In this paper, we increase the size of the output sequence from binary to digital sequence in the field to obtain byte sequence, then we test this new sequence not only as binary but also -sequence. So we have to test the new output sequence in the new mathematical field. This is done by changing the base of the
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
Nowadays, the rapid development of multi-media technology and digital images transmission by the Internet leads the digital images to be exposed to several attacks in the transmission process. Therefore, protection of digital images become increasingly important.
To this end, an image encryption method that adopts Rivest Cipher (RC4) and Deoxyribonucleic Acid (DNA) encoding to increase the secrecy and randomness of the image without affecting its quality is proposed. The Means Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Coefficient Correlation (CC) and histogram analysis are used as an evaluation metrics to evaluate the performance of the proposed method. The results indicate that the proposed method is secure ag
... Show More