This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.
Root-finding is an oldest classical problem, which is still an important research topic, due to its impact on computational algebra and geometry. In communications systems, when the impulse response of the channel is minimum phase the state of equalization algorithm is reduced and the spectral efficiency will improved. To make the channel impulse response minimum phase the prefilter which is called minimum phase filter is used, the adaptation of the minimum phase filter need root finding algorithm. In this paper, the VHDL implementation of the root finding algorithm introduced by Clark and Hau is introduced.
VHDL program is used in the work, to find the roots of two channels and make them minimum phase, the obtained output results are
The corrosion of metals is of great economic importance. Estimates show that the quarter of the iron and the steel produced is destroyed in this way. Rubber lining has been used for severe corrosion protection because NR and certain synthetic rubbers have a basic resistance to the very corrosive chemicals particularly acids. The present work includes producing ebonite from both natural and synthetic rubbers ; therefore, the following materials were chosen to produce ebonite rubber: a) Natural rubber (NR). b) Styrene butadiene rubber (SBR). c) Nitrile rubber (NBR). d) Neoprene rubber (CR) [WRT]. The best ebonite vulcanizates are obtained in the presence of 30 Pphr sulfur, and carbon black as reinforcing filler. The relation between
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreIn this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.
Angle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreIn this research we will present the signature as a key to the biometric authentication technique. I shall use moment invariants as a tool to make a decision about any signature which is belonging to the certain person or not. Eighteen voluntaries give 108 signatures as a sample to test the proposed system, six samples belong to each person were taken. Moment invariants are used to build a feature vector stored in this system. Euclidean distance measure used to compute the distance between the specific signatures of persons saved in this system and with new sample acquired to same persons for making decision about the new signature. Each signature is acquired by scanner in jpg format with 300DPI. Matlab used to implement this system.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More