This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.
Time series have gained great importance and have been applied in a manner in the economic, financial, health and social fields and used in the analysis through studying the changes and forecasting the future of the phenomenon. One of the most important models of the black box is the "ARMAX" model, which is a mixed model consisting of self-regression with moving averages with external inputs. It consists of several stages, namely determining the rank of the model and the process of estimating the parameters of the model and then the prediction process to know the amount of compensation granted to workers in the future in order to fulfil the future obligations of the Fund. , And using the regular least squares method and the frequ
... Show MoreThis work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2 and m =1,2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.