Preferred Language
Articles
/
GhdIU44BVTCNdQwCfEIj
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Wed Feb 29 2012
Journal Name
Al-khwarizmi Engineering Journal
Color Image Denoising Using Stationary Wavelet Transform and Adaptive Wiener Filter
...Show More Authors

The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing.  Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds.  This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 11 2017
Journal Name
Journal Of Mathematical Imaging And Vision
Fast Recursive Computation of Krawtchouk Polynomials
...Show More Authors

View Publication
Scopus (41)
Crossref (41)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Proceedings Of The 10th International Joint Conference On Computational Intelligence
Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 25 2021
Journal Name
2021 7th International Conference On Contemporary Information Technology And Mathematics (iccitm)
Anomaly Detection in Flight Data Using the Naïve Bayes Classifier
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 01 2009
Journal Name
2009 Etp International Conference On Future Computer And Communication
Signal Processing Techniques for Robust Spectrum Sensing
...Show More Authors

Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
GENERATION OF MPSK SIGNAL USING LOGIC CIRCUITS
...Show More Authors

The traditional technique of generating MPSK signals is basically to use IQ modulator that involves analog processing like multiplication and addition where inaccuracies may exist and would lead to imbalance problems that affects the output modulated signal and hence the overall performance of the system. In this paper, a simple method is presented for generating the MPSK using logic circuits that basically generated M-carrier signals each carrier of different equally spaced phase shift. Then these carriers are time multiplexed, according to the data symbols, into the output modulated signal.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Trickling Filter and Extended Aeration of Wastewater Treatment Plants
...Show More Authors

In recent decades, there has been increasing interest in wastewater treatment because of its direct impact on the environment and public health. Over time, other forms of treatment have been developed and modified, including extended aeration. This process is included in the suspended growth system. In this paper, a comparative study was conducted between the efficiency of the extended aeration plant and that of the trickling filter plant in removal of BOD and COD.  The method of comparison was done by knowing the value of the pollutant before and after the treatment and then extract the removal ratio of each pollutant within each plant. The results showed that the percentage of removal of BOD in the trickling filte

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota

... Show More
View Publication
Scopus Crossref