Preferred Language
Articles
/
GhalDIcBVTCNdQwCiDPx
Design and implementation monitoring robotic system based on you only look once model using deep learning technique
...Show More Authors

<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in undesirable places to transmit live video with a moving camera and process it by the YOLOv5 model. Also, the robot system can receive images, videos, or YouTube links and process them with YOLOv5. Raspberry Pi is controlled remotely by connecting to the network through Wi-Fi locally or publicly using the internet with a remote desktop connection application. The results were very satisfactory and proved the high-performance efficiency of the robot.</span>

Scopus Crossref
View Publication
Publication Date
Wed Mar 01 2023
Journal Name
Results In Engineering
Low-cost autonomous car level 2: Design and implementation for conventional vehicles
...Show More Authors

View Publication
Scopus (29)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Science
Gray-Scale Image Compression Method Based on a Pixel-Based Adaptive Technique
...Show More Authors

     Today in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (19)
Crossref (12)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
3-D Packing in Container using Teaching Learning Based Optimization Algorithm
...Show More Authors

The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jul 31 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Classification and monitoring of autism using svm and vmcm
...Show More Authors

Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this

... Show More
Preview PDF
Scopus (3)
Scopus
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
GNSS Baseline Configuration Based on First Order Design
...Show More Authors

The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution  of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.

FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic

... Show More
View Publication
Publication Date
Thu May 05 2022
Journal Name
Karbala International Journal Of Modern Science
Heterogeneous catalytic degradation of dye by Fenton-like oxidation over a continuous system based on Box–Behnken design and traditional batch experiments
...Show More Authors

In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15

... Show More
View Publication
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Journal Of Sport Science Technology And Physical Activities
The effect of using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students
...Show More Authors

The aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref