<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in undesirable places to transmit live video with a moving camera and process it by the YOLOv5 model. Also, the robot system can receive images, videos, or YouTube links and process them with YOLOv5. Raspberry Pi is controlled remotely by connecting to the network through Wi-Fi locally or publicly using the internet with a remote desktop connection application. The results were very satisfactory and proved the high-performance efficiency of the robot.</span>
In this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.
The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi
... Show MoreThe subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.
The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.
In Production and Operations Management the specialists have tried to develop a strategy to counter the risks arising from the activities of the organization and of waste of various types and therefore the risk management in the contemporary framework represents a phenomenon of new quality, and can not be this phenomenon to take practical dimensions, but the development of culture of the organization towards the risks and deal with all aspects and paint ways to address them within an integrated program, and requires new skills and systems provide accurate information capable of coordination between the various parties within the organization.
The research aims to develop a blu
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreToday in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreAutism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images