Charge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of erythromycin ethylsuccinate in pharmaceutical preparations.
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Simple, sensitive and accurate two methods were described for the determination of terazosin. The spectrophotometric method (A) is based on measuring the spectral absorption of the ion-pair complex formed between terazosin with eosin Y in the acetate buffer medium pH 3 at 545 nm. Method (B) is based on the quantitative quenching effect of terazosin on the native fluorescence of Eosin Y at the pH 3. The quenching of the fluorescence of Eosin Y was measured at 556 nm after excitation at 345 nm. The two methods obeyed Beer’s law over the concentration ranges of 0.1-8 and 0.05-7 µg/mL for method A and B respectively. Both methods succeeded in the determination of terazosin in its tablets
Simple, sensitive, accurate and inexpensive spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) in pure and dosage forms. This method is based on diazotization of primary amine group of sulfamethoxazole with sodium nitrite and hydrochloric acid followed by coupling with diphenylamine in acidic medium to obtain a stable blue colored dye and show a maximum absorption (max) at 530 nm. Different variables affecting the completion of reaction have been carefully optimized, following the classical univariate sequence and modified simplex method. Beer’s law is obeyed in the concentration range of (0.5-12.0 µg.mL-1) with molar absorptivity of 4.9617×104 L.mol-1.cm-1. The
... Show MoreA simple, sensitive and accurate spectrophotometric method has been developed for the determination of salbutamol sulphate (SAB) and isoxsuprine hydrochloride (ISX) in pure and pharmaceutical dosage. The method involved oxidation of (SAB) and (ISX) with a known excess of N-bromosuccinamid in acidic medium, and subsequent occupation of unreacted oxidant in decolorization of Evans blue dye (EB). This, in the presence of SAB or ISX was rectilinear over the ranges 1.0-12.0, 1.0-11.0 µg/mL, with molar absorptivity 4.21×104 and 2.58×104 l.mol-1.cm-1 respectively. The developed method had been successfully applied for the determination of the studied drugs in their pharmaceutical dosage resulting i
... Show MoreSimple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor and then measured at 299.9 nm with correlat
... Show MoreSimple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor
... Show MoreVerapamil Hydrochloride (VH) has been determined spectrophotometrically by using Methyl Orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method was based on complexation between (MO and VH). After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 4. The colored complex formed between VH and the reagents were transferred into separating funnels and extracted using 4.5 ml CH2Cl2 and were shaken for (4 minutes). The extracted organic layer was used for the preparation of the calibration curves for spectrophotometric measurements of VH at 437nm. The blanks were carried out in exactly the same way throughout the whol
... Show MoreA spectrophotometric method is proposed for the determination of some drugs containing amino group such as mesalazine, metoclopramide and dopamine in pharmaceutical formulations. It was simple, precise, accurate, rapid, and based on the oxidation of each drug with chromate as an oxidizing agent in the presence of 1N hydrochloric acid. Then indigo carmine is reacted with residual chromate in the presence of a catalysis factor (sodium oxalate). Increasing in absorbance's value of the color system is proportional to the amount of the three drugs which is measured at the selected wavelength of 610 nm.
The proposed method is obeying Beer's law in the ranges of (1-40, 2-44 and 2-52) ppm for the concentration of
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 µg∙mL-1 for Ciprofloxacin and 2 to 22 µg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) were
... Show MoreBased on the diazotization-coupling reaction, a new, simple, and sensitive spectrophotometric method for determining of a trace amount of (BPF) is presented in this paper. Diazotized metoclopramide reagent react with bisphenol F produces an orange azo-compound with a maximum absorbance at 461 nm in alkaline solution. The experimental parameters were optimized such as type of alkaline medium, concentration of NaOH, diazotized metoclopramide amount, order additions, reaction time, temperature, and effect of organic solvents to achieve the optimal performance for the proposed method. The absorbance increased linearly with increasing bisphenol F concentration in the range of 0.5-10 μg mL-1 under ideal conditions, with a correlati
... Show More