Today, the five Caspian riparian states on the shores of the Caspian Sea (Kazakhstan, Turkmenistan, Azerbaijan, Russia, and Iran) have become a front for ambitions and international and regional competition, especially in light of the features and characteristics that natural geography has endowed them with and their enjoyment of a group of economic and mineral wealth that are not optimally exploited so far which made it a strategic attraction area for international trends and interventions, especially Western ones. It is a battleground for major international companies aiming to monopolize promising industrial investments in order to impose control and influence on the region’s resources and economic wealth and thus impose their forei
... Show MoreLow bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different de
This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
Abstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observ
... Show MoreSingle mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as
... Show MoreAbstract
The fiber Bragg grating (FBG) technology has been rapidly applied in the sensing technology field. In this work, uniform FBG was used as pressure sensor based on measuring related Bragg wavelength shift. The pressure was applied directly by air compressor to the sensor and the pressure was ranged from 1 to 6 bar.
This sensor also was affected by the external temperature so as a result it could be used as a temperature sensor. This sensor could be used to monitor the pressure of dams. It has been shown from the result that the sensor is very sensitive to the pressure and the sensitivity was (67 pm\bar) and is very sensitive to temperature and the sensitivity was (10p
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More