This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.
A session is a period of time linked to a user, which is initiated when he/she arrives at a web application and it ends when his/her browser is closed or after a certain time of inactivity. Attackers can hijack a user's session by exploiting session management vulnerabilities by means of session fixation and cross-site request forgery attacks.
Very often, session IDs are not only identification tokens, but also authenticators. This means that upon login, users are authenticated based on their credentials (e.g., usernames/passwords or digital certificates) and issued session IDs that will effectively serve as temporary static passwords for accessing their sessions. This makes session IDs a very appealing target for attackers. In many c
The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
In this paper an authentication based finger print biometric system is proposed with personal identity information of name and birthday. A generation of National Identification Number (NIDN) is proposed in merging of finger print features and the personal identity information to generate the Quick Response code (QR) image that used in access system. In this paper two approaches are dependent, traditional authentication and strong identification with QR and NIDN information. The system shows accuracy of 96.153% with threshold value of 50. The accuracy reaches to 100% when the threshold value goes under 50.
Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreA novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreThe revolution of multimedia has been a driving force behind fast and secured data transmission techniques. The security of image information from unapproved access is imperative. Encryptions technique is used to transfer data, where each kind of data has its own special elements; thus various methods should to be used to conserve distributing the image. This paper produces image encryption improvements based on proposed an approach to generate efficient intelligent session (mask keys) based on investigates from the combination between robust feature for ECC algebra and construction level in Greedy Randomized Adaptive Search Procedure (GRASP) to produce durable symmetric session mask keys consist of ECC points. Symmetric behavior for ECC
... Show MoreFinding similarities in texts is important in many areas such as information retrieval, automated article scoring, and short answer categorization. Evaluating short answers is not an easy task due to differences in natural language. Methods for calculating the similarity between texts depend on semantic or grammatical aspects. This paper discusses a method for evaluating short answers using semantic networks to represent the typical (correct) answer and students' answers. The semantic network of nodes and relationships represents the text (answers). Moreover, grammatical aspects are found by measuring the similarity of parts of speech between the answers. In addition, finding hierarchical relationships between nodes in netwo
... Show MoreDigital forensic is part of forensic science that implicitly covers crime related to computer and other digital devices. It‟s being for a while that academic studies are interested in digital forensics. The researchers aim to find out a discipline based on scientific structures that defines a model reflecting their observations. This paper suggests a model to improve the whole investigation process and obtaining an accurate and complete evidence and adopts securing the digital evidence by cryptography algorithms presenting a reliable evidence in a court of law. This paper presents the main and basic concepts of the frameworks and models used in digital forensics investigation.