Preferred Language
Articles
/
GYbwmYYBIXToZYALdpS9
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control
...Show More Authors

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Data integrity enhancement for the encryption of color images based on CRC64 technique using multiple look-up tables
...Show More Authors

Communication is one of the vast and rapidly growing fields of engineering, where
increasing the efficiency of communication by overcoming the external
electromagnetic sources and noise is considered a challenging task. To achieve
confidentiality for color image transmission over the noisy communication channels
a proposed algorithm is presented for image encryption using AES algorithm. This
algorithm combined with error detections using Cyclic Redundancy Check (CRC) to
preserve the integrity of the encrypted data. This paper presents an error detection
method uses Cyclic Redundancy Check (CRC), the CRC value can be generated by
two methods: Serial and Parallel CRC Implementation. The proposed algorithm for
the

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Wide-range tunable subwavelength band-stop filter for the far-infrared wavelengths based on single-layer graphene sheet
...Show More Authors

Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Bulletin Of Electrical Engineering And Informatics
Lightweight hamming product code based multiple bit error correction coding scheme using shared resources for on chip interconnects
...Show More Authors

In this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Modified BFGS Update (H-Version) Based on the Determinant Property of Inverse of Hessian Matrix for Unconstrained Optimization
...Show More Authors

The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never  approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm
...Show More Authors

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DAMAGE DETECTION AND LOCATION FOR IN AND OUT-OFPLANE CURVED BEAMS USING FUZZY LOGIC BASED ON FREQUENCY DIFFERENCE
...Show More Authors

In this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul

... Show More
View Publication Preview PDF