This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.
The agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreRecent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreSingle-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MoreNanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show MoreMassive multiple-input multiple-output (MaMi) systems have attracted much research attention during the last few years. This is because MaMi systems are able to achieve a remarkable improvement in data rate and thus meet the immensely ongoing traffic demands required by the future wireless networks. To date, the downlink training sequence (DTS) for the frequency division duplex (FDD) MaMi communications systems have been designed based on the idealistic assumption of white noise environments. However, it is essential and more practical to consider the colored noise environments when designing an efficient DTS for channel estimation. To this end, this paper proposes a new DTS design by exploring the joint use of spatial channel and n
... Show MoreIn this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The banking sector is currently facing great challenges resulting from intense competition in the financial environment, and this is what makes the supreme audit bodies and the Central Bank audit as the highest supervisory authority on banks in order to achieve profit and not be exposed to loss, and this requires identifying the banking strengths and risks that constitute points Weakness that affects the future performance and the life of the bank, which requires special supervisory care, and from this point of view, the research aims to use the CAMELS model as a control tool in banks, through the use of its six indicators: capital adequacy, asset quality, management quality, profits, liquidity And sensitivity to market risks, th
... Show More