This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.
The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information. Due to high processing requirements, traditional encryption algorithms demand considerable computational effort for real-time audio encryption. To address these challenges, this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps. The audio data is first shuffled using Tent map for the random permutation. The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map. Finally, the Exclusive OR (XOR) operation is applied between the generated key and the sh
... Show MoreObjective: To measure the effect of the pharmacist-led medication reconciliation service before hospital discharge on preventing potential medication errors. Methods: This behavioral interventional study took place in a public teaching hospital in Iraq between December 2022 and January 2023. It included inpatients who were taking four or more medications upon discharge from the internal medicine ward and the cardiac care unit. The researcher provided the patients with a medication reconciliation form and reconciliation form (including medication regimen and pharmacist instructions) before discharging them home. Any discrepancies between the patients’ understanding and the actual medication recommendations prescribed by the physici
... Show MoreThe first aim of this paper was to evaluate the push-out bond strength of the gutta-percha coating of Thermafil and GuttaCore and compare it with that of gutta-percha used to coat an experimental hydroxyapatite/polyethylene (HA/PE) obturator. The second aim was to assess the thickness of gutta-percha around the carriers of GuttaCore and HA/PE obturators using microcomputed tomography (
Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreCancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More