This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.
A novel series of chitosan derivatives were synthesized via reaction of chitosan with carbonyl compounds and grafted it’s by with different amine compounds substituted hydrogen. The produced polymers were characterized by different analyses FTIR, 1HCNMR, XRD, DSC and TGA. Solubility in water as well as many solvent was investigated, antibacterial activity of chitosan and its derivatives against two types of bacteria E. coli and S. aureus was also investigated. The results showed that derivatives sort of have antibacterial activities against Esherichia coli (Gram negative) better than chitosan whilst compound IX has better antibacterial against Staphylococcus aureus (Gram positive). SEM analysis showed that increase of surface roughness wi
... Show MoreThe demand for single photon sources in quantum key distribution (QKD) systems has necessitated the use of weak coherent pulses (WCPs) characterized by a Poissonian distribution. Ensuring security against eavesdropping attacks requires keeping the mean photon number (µ) small and known to legitimate partners. However, accurately determining µ poses challenges due to discrepancies between theoretical calculations and practical implementation. This paper introduces two experiments. The first experiment involves theoretical calculations of µ using several filters to generate the WCPs. The second experiment utilizes a variable attenuator to generate the WCPs, and the value of µ was estimated from the photons detected by the BB
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreBackground: It is important to achieve good glycemic control to avoid long-term diabetic complications. It has been largely debated about the role of correct way of insulin administration to get the desired glycemic control.
Objective: To evaluate the effect of teaching diabetic patients who are on insulin therapy the correct way of injecting insulin and its effect on glycemic control.
Methods: A non randomized clinical trial with 820 diabetic patients on insulin therapy on whom A1 c estimation was performed before and after three months of teaching them the right injection technique.
Results : Sixty seven patients (8.17%) had A1 c 6.5% before they were enrolled in the study while the majority (753 patents, 91.82%) had A1 c 6.5%
Background: It is important to achieve good glycemic control to avoid long-term diabetic complications. It has been largely debated about the role of correct way of insulin administration to get the desired glycemic control.
Objective: To evaluate the effect of teaching diabetic patients who are on insulin therapy the correct way of injecting insulin and its effect on glycemic control.
Methods: A non randomized clinical trial with 820 diabetic patients on insulin therapy on whom A1 c estimation was performed before and after three months of teaching them the right injection technique.
Results : Sixty seven patients (8.17%) had A1 c 6.5% before they were enrolled in the study while the majority (753 patents, 91.82%) had A1 c 6.5%
Objective: The purpose of this study was to assess the effectiveness of Vibriophage Universiti Sains Malaysia 8 (VPUSM 8), a bacteriophage that destroys bacteria, in managing the proliferation of Vibrio cholerae, specifically the El Tor serotype, as an alternate therapeutic strategy. Methods: The study entailed subjecting water samples from Kelantan, Malaysia, to reproduce the natural circumstances that promote the growth of V. cholerae. Subsequently, the samples were contaminated with the V. cholerae O1 El Tor Inaba strain and treated using VPUSM 8. The study employed a controlled experimental design, wherein the samples were divided into three groups, each experiencing different treatment methods. Quantifying the number of colony-
... Show More