Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show MoreExploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
Abstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show MoreThe influence of sintering and annealing temperatures on the structural, surface morphology, and optical properties of Ag2Cu2O4 thin films which deposited on glass substrates by pulsed laser deposition method have been studied. Ag2Cu2O4 powders have polycrystalline structure, and the Ag2Cu2O4 phase was appear as low intensity peak at 35.57o which correspond the reflection from (110) plane. Scan electron microscopy images of Ag2Cu2O4 powder has been showed agglomerate of oxide particles with platelets shape. The structure of thin films has been improved with annealing temperature. Atomic Force micrographs of Ag2Cu2O4 films showed uniform, homogenous films and the shape of grains was almost spherical and larger grain size of 97.85 nm has o
... Show MoreIn this paper, simulation study of the frequency shift of photonic bandgaps due to refractive index scaling using liquids filled hollow-core photonic crystal fibers is presented. Different liquids (distilled water, n-hexane, methanol, ethanol and acetone) are used to fill the cladding of 2 types of hollow core photonic crystal fibers (HC19-1060, HC7-1060). These liquids are used to change the effective index scaling and index contrast of the cladding. The effect of increasing temperature of the liquid (20-100 0C for water and 20-70 0C for other liquids ) infiltrated hollow core fiber on the bandgap width and transmission properties has been computed. The maximum photonic bandgap width at 0.0243 has appeared with filling HC7-1060 PCF with
... Show MoreAbstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fi
... Show MoreThe present study has conducted to investigate the effect of hot aqueous extract of seeds and leaves of fenugreek (Trigonella foenum-graecum) on embryonic development in Swiss albino mice morphologically , the results is showed throught dosage pregnant female orally after period 4, 8, 12days at the beginning of pregnancy by doses 100 , 200 , 300 mg/kg of body weight , the results showed normal period of pregnancy 21 days and abortion did not occur when the pregnant mice take the hot aqueous extract of leaves of fenugreek, but the pregnant mice that take the hot aqueous extract of seeds of fenugreek occurred abortion of embryos and showed some histopathological changes in ovaries and uterus such as congestion, hemorrhage, necrosis, odema,
... Show MoreMS Elias, RGM AL-helfy, Plant Archives, 2019
The result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.