The electrocardiogram (ECG) is the recording of the electrical potential of the heart versus time. The analysis of ECG signals has been widely used in cardiac pathology to detect heart disease. The ECGs are non-stationary signals which are often contaminated by different types of noises from different sources. In this study, simulated noise models were proposed for the power-line interference (PLI), electromyogram (EMG) noise, base line wander (BW), white Gaussian noise (WGN) and composite noise. For suppressing noises and extracting the efficient morphology of an ECG signal, various processing techniques have been recently proposed. In this paper, wavelet transform (WT) is performed for noisy ECG signals. The graphical user interface (GUI) system is developed for visual representation and adaptive enhancement on noise modeling in ECG-based signal processing. Percentage root mean square difference (PRD) was measured between the modeled noisy signals and the samples of the original ECG. Moreover, cross correlation (XCorr) and root mean square error (RMSE) were performed between the noisy ECG signals and the denoised ones which resulted from WT denoising technique initially to evaluate the effectiveness of the WT denoising technique. The results show that the WT was successfully removed different types of proposed models of noises. The PRD was reasonable and are within the acceptable range, which is less than 50%, with 17% for BW and 47% for PLI indicating that the models and methods used for prediction are ideal for high precision signal applications. This study will help medical doctors, clinicians, physicians, and technicians to eliminate different types of noise.
The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values signif
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreIn this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.