Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when added 0.5% ratio of continuous UHMWPE fiber to polymer blend nanocomposite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) sample and this represents the optimal ratios of components of hybrid composite sample. Therefore, this blend may be a candidate for achieving the properties required for the applications of maxillofacial prosthetics
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.
This study includes the preparation of the ferrite nano ferrite CuxAl0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) M using the auto combustion method (sol-gel), and citric acid was used as fuel for auto combustion. The ferrite samples were checked by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopes (FE-SEM), and energy dispersive X-ray analyzer (EDX). They showed that the prepared compound has a face-centered cubic structure (FCC). The lattice constant increases with an increase in the percentage of doping of the copper ions, and a decrease for the aluminum ion and that the compound is porous and its grains are spherical, and there are no other
... Show MoreA Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one
... Show MoreThe effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%). Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction
 
... Show MoreCadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present w
... Show More