Gravity and magnetic data are used to study the tectonic situation of Al-Kut- Al-
Hai and surrounding areas in central Iraq. The study included application of many
processing and interpretation programs. The window method with different spacing
was used to separate the residual from regional anomalies for gravity and magnetic
data. The Total Horizontal Derivative (THDR) techniques used to identify the fault
trends in the basement and sedimentary cover rocks depending upon gravity and
magnetic data. The identified faults in the study area show (NW-SE), (NE-SW) (NS)
and (E-W) trends. It is believed that these faults extending from the basement to
the upper most layer of the sedimentary cover rocks.
This research deals with processing and Interpretation of Bouguer anomaly gravity field, using two dimensional filtering techniques to separate the residual gravity field from the Bouguer gravity map for a part of Najaf Ashraf province in Iraq. The residual anomaly processed in order to reduce noise and give a more comprehensive vision about subsurface linear structures. Results for descriptive interpretation presented as colored surfaces and contour maps in order to locate directions and extensions of linear features which may interpret as faults. A comparison among gravity residual field , 1st derivative and horizontal gradient made along a profile across the study area in order to assign the exact location of a major fault. Furthermor
... Show MoreAromaticity, antiaromaticity and chemical bonding in the ground (S0), first singlet excited (S1) and lowest triplet (T1) electronic states of disulfur dinitride, S2N2, were investigated by analysing the isotropic magnetic shielding, σiso(r), in the space surrounding the molecule for each electronic state. The σiso(r) values were calculated by state-optimized CASSCF/cc-pVTZ wave functions with 22 electrons in 16 orbitals constructed from gauge-including atomic orbitals (GIAOs). The S1 and T1 electronic states were confirmed as 11Au and 13B3u, respectively, through linear response CC3/aug-cc-pVTZ calculations of the vertical excitation energies for eight singlet (S1–S8) and eight triplet (T1–T8) electronic states. The aromaticities of S
... Show MoreA quantitative interpretation of gravity and magnetic anomalies in west of Tikrit city and surroundings, has been completed utilizing Grav2dc and Mag2dc (2D, 2.5D) forward techniques. The modeling has been carried out along four profiles, two NW-SE profiles along the distinct gravity residual anomalies and two NE-SW profiles along the magnetic residual anomalies. The most geologic plausible model that matches the data was picked. The model along the gravity profile (A-A') reveal faulting of the basement, whereas along the profiles B-B', C-C' and D-D' did not present faulting. The models comprise of two rock units, the first is the sedimentary cover and the second unit i
... Show MoreGravity and magnetic data were used to study the deep crustal structures in Karbala and surrounding areas in central Iraq. The space window method was used to separate the residual from regional anomalies of gravity and magnetic data, the spaces of window are equal to 48,36 and 24 km. The Total Horizontal Derivative (THD) techniques and local wavenumber of gravity and magnetic are used to identify the faults and their trends with the basement rocks. The N45W, N45E, N-S and rarely E-W trends of faults are detected in the basement rock. It is believed that some of these faults extending from the basement to the uppermost layer of the sedimentary rocks.
In this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.
The doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3