Objectives: This study explored knowledge, attitude, and practice of infection control by dental students at College of Dentistry/ University of Baghdad, Iraq. Material and Methods: Three hundred dental students participated in this study. A self administrated questionnaire with 21 close ended questions related to use of personal protective equipments, infection control awareness, vaccination status, percutaneous exposures, and attitude towards treatment of patients with hepatitis B (HBV)/ or human immunodeficiency virus (HIV) was distributed to dental students. Data were analyzed using Statistical Package for Social Sciences (SPSS) version 21. Fisher exact and Chi-square test were used with significance level set to 0.05. Results: The response rate was high (92%). The majority of students received hepatitis B vaccine (undergraduates 84.04% and postgraduates 91.11%). Needle stick injuries was the most common type for percutanuous injuries with larger number of injuries occurred among postgraduates (85.56%) in comparison to (55.85%) in undergraduates (p < 0.05). Majority of students used personal protective equipments, but only a small proportion of them washed their hands before donating gloves. There was a significant difference (P = 0.021) between undergraduates (15.96%) and postgraduates (27.78%) attitude towards treatment of patient with history of HBV or HIV. Conclusion: More efforts must be spent to improve students' attitude and compliance with infection control policy. Also, a continuous and rigorous assessment of students’ knowledge and practice of infection control measure must be done to ensure that the best is delivered by our dental students while treating their patients.
Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreDiabetes mellitus caused by insulin resistance is prompted by obesity. Neuropeptide Nesfatin-1 was identified in several organs, including the central nervous system and pancreatic islet cells. Nesfatin-1 peptide appears to be involved in hypothalamic circuits that energy homeostasis and control food intake. Adiponectin is a plasma collagen-like protein produced by adipocytes that have been linked to the development of insulin resistance (IR), diabetes mellitus type 2 (DMT2), and cardiovascular disease (CVD). Resistin was first identified as an adipose tissue–specific hormone that was linked to obesity and diabetes. The aim of this study was to estimate the relationship between human serum nesfatin-1, adiponect
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreStoring, transferring, and processing high-dimensional electroencephalogram (EGG) signals is a critical challenge. The goal of EEG compression is to remove redundant data in EEG signals. Medical signals like EEG must be of high quality for medical diagnosis. This paper uses a compression system with near-zero Mean Squared Error (MSE) based on Discrete Cosine Transform (DCT) and double shift coding for fast and efficient EEG data compression. This paper investigates and compares the use or non-use of delta modulation, which is applied to the transformed and quantized input signal. Double shift coding is applied after mapping the output to positive as a final step. The system performance is tested using EEG data files from the C
... Show MoreIn this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da
... Show More