Green nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematicbreakthrough. Metallic nanoparticles (steel or steel oxide nanoparticles) have attracted loads ofhobbies because of their different physiological, technological, and chemical The biologicaltechnique is popular because it produces green nanoparticles in an environmentally friendly,simple, easy, quick, and cost-effective manner. Amino acid phenolic, flavonoids, terpenoids,and proteins are examples of reduced and oxidizing agents. Agents of stabilization, synthesisusing plants, on the other hand, was already being debated., basics of green synthesis techniquesexplored in this study with an emphasis on metals or metal oxides (ZnO, AgO, and TiO2), terpenoids as well as proteins, which can operate as chemical reducing and oxidizing agents, aswell as stabilization and of agents. Green synthesis using plants, , is still being debated.
For the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreSoils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chem
... Show MoreThe aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
In this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adso
... Show MoreIn this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adsor
... Show MoreA variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.