Green nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematicbreakthrough. Metallic nanoparticles (steel or steel oxide nanoparticles) have attracted loads ofhobbies because of their different physiological, technological, and chemical The biologicaltechnique is popular because it produces green nanoparticles in an environmentally friendly,simple, easy, quick, and cost-effective manner. Amino acid phenolic, flavonoids, terpenoids,and proteins are examples of reduced and oxidizing agents. Agents of stabilization, synthesisusing plants, on the other hand, was already being debated., basics of green synthesis techniquesexplored in this study with an emphasis on metals or metal oxides (ZnO, AgO, and TiO2), terpenoids as well as proteins, which can operate as chemical reducing and oxidizing agents, aswell as stabilization and of agents. Green synthesis using plants, , is still being debated.
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
A variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.
The aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
Cilnidipine is a dihydropyridine class of calcium channel blockers, it is classified as a BCS class II drug, characterized by a low oral bioavailability of 13%. Consequently, the utilization of nanoparticle preparation is anticipated to enhance its bioavailability. The objective of the research is to integrate cilnidipine nanoparticles into oral films as a means of enhancing patient adherence. The optimal polymers for producing Cilnidipine films were PVA cold and or HPMC E5 at different concentrations using a casting technique with glycerol as a plasticizer. The Nano suspension-based preparation of Cilnidipine's oral film containing the combination of polymers exhibited a significant enhancement in vitro dissolution, with a percentage excee
... Show MoreCilnidipine is a dihydropyridine calcium channel blocker used to improve the neurological outcome following subarachnoid hemorrhage. It belongs to BCS class II drugs that have a low oral bioavailability of 13%, thus preparation as nanoparticles would be expected to improve bioavailability. The aim of the study is to prepare Cilnidipine as nanoparticles using different carriers and co-carriers, concentrations, and types. Cilnidipine nanoparticles were prepared by a solvent anti-solvent method using different carriers (Soluplus®, Poloxamer 188, PVA cold) with co-stabilizers (PEG200, glycerol) at different ratios. Based on the obtained results, formula N4, which included Soloplus in a 5:5:1.19 weight ratio of drug to
... Show MoreFor the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreIn this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adso
... Show MoreIn this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adsor
... Show More