Green nanotechnology is a thrilling and rising place of technology and generation that braces the ideas of inexperienced chemistry with ability advantages for sustainability, protection, and the general protection from the race human. The inexperienced chemistry method introduces a proper technique for the production, processing, and alertness of much less dangerous chemical substances to lessen threats to human fitness and the environment. The technique calls for in- intensity expertise of the uncooked materials, particularly in phrases in their creation into nanomaterials and the resultant bioactivities that pose very few dangerous outcomes for people and the environment. In the twenty-first century, nanotechnology has become a systematic breakthrough. Metallic nanoparticles (steel or steel oxide nanoparticles) have attracted loads of hobbies because of their different physiological, technological, and chemical The biological technique is popular because it produces green nanoparticles in an environmentally friendly, simple, easy, quick, and cost-effective manner. Amino acid phenolic, flavonoids, terpenoids, and proteins are examples of reduced and oxidizing agents. Agents of stabilization, synthesis using plants, on the other hand, was already being debated., basics of green synthesis techniques explored in this study with an emphasis on metals or metal oxides (ZnO, AgO, and TiO2),terpenoids as well as proteins, which can operate as chemical reducing and oxidizing agents, as well as stabilization and of agents. Green synthesis using plants, , is still being debated.
Colloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreNanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreThroughout Agriculture has mostly relied on the use of natural fertilizers throughout human history, which are compounds that increase the nitrogen levels in the soil. Modern agriculture was made possible by the introduction of synthetic fertilizers at the end of the 19th centuryproduction of agriculture. Their application enhanced crop yields and sparked an agricultural revolution unlike anything the world had ever seen.In the near future, synthetic fertilizers are anticipated to continue to have a significant impa ct on human life, both positively and negatively. They are frequently utilized for producing all t ypes of crops and are essential to plant growth. The significance of synthetic fertilizers is their ability to provide the soil w
... Show MoreThe aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show MoreThe emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreMagnesium oxide nanoparticles (MgO NPs) were synthesized by a green method using the peels of Persimmon extract as the reducing agent , magnesium nitrate, and NaOH. This method is eco-friendly and non-toxic. In this study, an ultrasound device was used to reduce the particle size, with the impact on the energy gap was set at the beginning at 5.39 eV and then turned to 4.10 eV. The morphological analysis using atomic force microscopy (AFM) showed that the grain size for MgO NPs was 67.70 nm which became 42.33 nm after the use of the ultrasound. The shape of the particles was almost spherical and became cylindrical. In addition the Field-Emission Scanning Electron Microscopy (FESEM) analysis sh
... Show More