Abstract New derivatives of 1,2,4- triazole , 1,2,4-triazole -3-one and 1,2,4-triazole-3-thione were obtained through this research. Acid hydrazide derivative was present from reaction of poly acryloyl chloride with hydrazine hydrate in presence of DMF as a solvent then reacted with benzonitrile and its derivatives to give 1,2,4-triazole derivatives. After that reaction of poly acryloyl chloride with semicarbazide and semithiocarbazide to form semicarbazone and semithiocarbazone derivatives respectively. Finally, closing of semicarbazone and semithiocarbazone derivatives with 2% NaOH gave 1,2,4-triazole -3-one and 1,2,4-triazole-4-thione derivatives respectively. These new synthesized products have been characterized by infrared, 1 H-n
... Show MorePhosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show MoreThis study is included the preparation of two tetradentate amide-thiol proligands of the general structure [H2Ln], [where; (n = (1–2)]. The ligands [H2L1] and [H2L2] have been prepared from the reaction of the cyclic thioester 2-oxo-1, 4-dithiacyclohexane (compound 1) and 3-chloro-2-oxo-1, 4 dithiacyclohexane (compound 2) with 2-aminomethanepyridine in (1:1) ratio respetively. The reaction was carried out in chloroform at room temperature and under N2 atmosphere. Structural formula of these two ligands have been reported.
This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper
... Show MoreSynthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show MoreIn this rescrch,new mixed ligand Schiff base complexes of Mn(II),Co(II),Ni(II),Cu(II), Cd(II), and Hg(II) are formulated from the Schiff base( L)resulting from o-phathalaldehyde(o-PA) with p-nitroaniline(p-NA)as a primary ligand and anthranilic acid as a subordinate ligand. Diagnosis of prepared Ligand and its complexes is done by spectral methods mass spectrometer;1H -NMR for ligand Schiff base FTIR, UV-Vis, molar conductance, elemental microanalyses, atomic absoption and magnetic susceptibility. The analytical studies for the all new complexes have shown octahedral geometries. The study of organicperformance of ligand Schiff base and its complexes show various activity agansit four type of bactria two gram (+) and two gram (-) .
The inelastic C2 form factors and the charge density distribution (CDD) for 58,60,62Ni and 64,66,68Zn nuclei has been investigated by employing the Skyrme-Hartree-Fock method with (Sk35-Skzs*) parametrization. The inelastic C2 form factor is calculated by using the shape of Tassie and Bohr-Mottelson models with appropriate proton and neutron effective charges to account for the core-polarization effects contribution. The comparison of the predicted theoretical values was conducted with the available measured data for C2 and CDD form factors and showed very good agreement.