The important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobi
... Show MoreRegression analysis models are adopted by using SPSS program to predict the 28-day compressive strength as dependent variable and the accelerated compressive strength as independent variable. Three accelerated curing method was adopted, warm water (35ºC) and autogenous according to ASTM C C684-99 and the British method (55ºC) according to BS1881: Part 112:1983. The experimental concrete mix design was according to ACI 211.1. Twenty eight concrete mixes with slump rang (25-50) mm and (75-100)mm for rounded and crushed coarse aggregate with cement content (585, 512, 455, 410, 372 and 341)Kg/m3.
The experimental results showed that the acc
... Show MoreCost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering. Elemental estimation, which in the early stage, estimates the construction costs depending on . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the rela
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreThe Purpose of this study is mainly to improve the competitive position of products economic units using technique target cost and method reverse engineering and through the application of technique and style on one of the public sector companies (general company for vegetable oils) which are important in the detection of prices accepted in the market for items similar products and processing the problem of high cost which attract managerial and technical leadership to the weakness that need to be improved through the introduction of new innovative solutions which make appropriate change to satisfy the needs of consumers in a cheaper way to affect the decisions of private customer to buy , especially of purchase private economic units to
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More