The laboratory experiment was conducted in the laboratories of the Musayyib Bridge Company for Molecular Analyzes in the year 2021-2022 to study the molecular analysis of the inbreed lines and their hybrids F1 to estimate the genetic variation at the level of DNA shown by the selected pure inbreed lines and the resulting hybrids F1 of the flowering gene. Five pure inbreed lines of maize were selected (ZA17WR) Late, ZM74, Late, ZM19, Early ZM49WZ (Zi17WZ, Late, ZM49W3E) and their resulting hybrids, according to the study objective, from fifteen different inbreed lines with flowering time. The five inbreed lines were planted for four seasons (spring and fall 2019) and (spring and fall 2020) in the spring season 2019 the inbreed lines were crossed and flowering time were recorded and in the fall season 2019 they were crossed according to the study objective (late × late), (late × early) and (early) × late) and (early × early) in the third season, The results indicated that the two initiators used with the target flowering gene are highly efficient in diagnosing genetic variations and genetic divergence between the selected inbreed lines and their resulting hybrids F1 according to the different flowering time using PCR Poly Chain Reaction and Gel electrophoresis techniques. ) and the fourth hybrid (early×early) was superior in most of its field traits. It was found that inbreed line No. 15 (ZA17WR) did not show any bands in the interaction of the PCR and the flowering gene, and this is evidence that this inbreed line is counted as being optimal for the target gene and therefore genes or genetic sites may influence the early or delayed flowering time trait Therefore, it needs future studies. The aim of the current study is to know the genetic structures that contain the flowering gene and according to the planting date, whether fall or spring, to take advantage of those results in choosing and determining the appropriate and most appropriate method in the maize crop breeding programs to obtain promising genetic structures in terms of flowering time, whether was early or late. Additionally using two techniques to gather leads to increase the usefulness of these two techniques as the number of examined hybrids and inbred lines continues to increase rapidly.
Deep Learning Techniques For Skull Stripping of Brain MR Images
A new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.
Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreWater saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreThe rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found
... Show MoreThis study investigated the healing effects of topical application of zerumbone, a well‐known anti‐inflammatory compounds loaded on nanostructured lipid carrier gel (Carbopol 940) (ZER‐NLCG) on excisional wounds in streptozotocin‐induced diabetic rats. Diabetic rats with inflicted superficial skin wound were topically treated with ZER‐NLCG, empty NLCG, and silver sulfadiazine cream (SSDC) once daily for 21 days. Wound tissue samples were analyzed for proinflammatory cytokines, namely, interleukin‐6 (IL‐6), interleukin‐1
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More