Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreBackground: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam
... Show More- Abstract -
This research tackles one of this nations scholar , was not studied by other researchers . Many of us know nothing about his life , books , arguments in a manner Like other scholars of this nation . Therefore , it is the task of this study , in a response to the favour of Ibn al – Labban on us , to reveal his works .
This study deals with him through four sections . section one investigate his biography , including six sub divisions regarding his name date of birth , Life , his father life , death , and finally , this section concludes with the embarrassment which might a reader face in differentiation between Ibn al – labban and the other respec
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreObjective: The aims of present study to detect the effectiveness of instruction program of non-pharmacological guideline on blood pressure and laboratory test.
Methodology: A pre-experimental study was conducted in Al-Sader Teaching Hospital from 8th of September 2019 to 25th of May 2020, in order to find out the effectiveness of instruction program concerning non-pharmacological guideline on controlling essential hypertension among patients. A non- probability (purposive sample) of 50 patients with essential hypertension is selected. Those patients are already diagnosed with Essential Hypertension
... Show MoreIn this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.