This study aims to identify changes in vegetation cover and its impact on the climate of Mosul City. The analytical method of the study relies on changes in Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST); GIS technology was used to measure these statistics. Landsat (5,8) imagery was used to detect the change in vegetation cover change and land surface temperature during the study period from 2010 to 2022, where the unsupervised classification technique was used to determine LU variations. The results revealed significant changes among the LU classes during the study period, primarily due to human activities. The most prominent change in LU was the urban expansion of agricultural land; continuously in all years, the vegetation cover area decreased from around 4076 km2 in 2010 to 1504 km2 in 2022, concentrated in the northeastern part of the city. This has led to negative effects on the climate, where temperature rates increased from (1-47 C0) in 2010 to (5.7-53 C0) in the last year of the study; the highest temperatures were recorded in urban growth areas and areas without vegetation.
The aim of the study is the assessment of changes in the land cover within Mosul City in the north of Iraq using Geographic Information Systems (GIS) and remote sensing techniques during the period (2014-2018). Satellite images of the Landsat 8 on this period have been selected to classify images in order to measure normalized difference vegetation index (NDVI) to assess land cover changes within Mosul City. The results indicated that the vegetative distribution ratio in 2014 is 4.98% of the total area under study, decreased to 4.77% in 2015 and then decreased to 4.54
This study investigates the changes occurring in the province of Basra using geospatial methods and analyzes the variations in land surface temperature among the various types of land cover. For the months of July and December in the years 2013 and 2021, Landsat images were used in Landsat 8 OLI/TIRS, and satellite images were processed using ArcGIS 10.8 software. The study's categories for land use and land cover were generated through the application of supervised classification techniques, and the land surface temperature was calculated using data from a satellite sensor's brightness temperature. According to the study's findings, there has been an increase in urban areas (including barren land). From 2013 to 2021, a greater correlati
... Show MoreThe object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
In order to take measures in controlling soil erosion it is required to estimate soil loss over area of interest. Soil loss due to soil erosion can be estimated using predictive models such as Universal Soil Loss Equation (USLE). The accuracy of these models depends on parameters that are used in equations. One of the most important parameters in equations used in both of models is (C) factor that represents effects of vegetation and other land covers. Estimating land cover by interpretation of remote sensing imagery involves Normalized Difference Vegetation Index (NDVI), an indicator that shows vegetation cover. The aim of this study is estimate (C) factor values for Part of Baghdad city using NDVI derived from satellite Image of Landsat-7
... Show MoreMulti-spectral satellite images of the Landsat satellite by the tow sensitive Thematic Mapper (TM) and Thematic Mapper Enhancement (ETM+), which covered the study area located south east of Iraq. In this research; used the sixth thermal spectral band (Thermal Band) for study the water cover in the AlRazzaza Lake located within the province of Karbala. We intended to study the cover a case of the study area, used satellite images showing the status of region during the period from 1990 to 2001 and 2007. From this study we conclude that cover the water of the study area change in sequence case to decrease during these years.
Multi-spectral satellite images of the Landsat satellite by the tow sensitive Thematic Mapper (TM) and Thematic Mapper Enhancement (ETM+), which covered the study area located south east of Iraq. In this research; used the sixth thermal spectral band (Thermal Band) for study the water cover in the Al-Razzaza Lake located within the province of Karbala. We intended to study the cover a case of the study area, used satellite images showing the status of region during the period from 1990 to 2001 and 2007. From this study we conclude that cover the water of the study area change in sequence case to decrease during these years.
Al-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized Difference Vegetation Index (NDVI), Geographic Information Systems(GIS), and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, th
... Show More