Preferred Language
Articles
/
GBedRo4BVTCNdQwCiEB8
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux
...Show More Authors

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperature from testing rig are used to extract the temperature distribution, local Nusselt number and average Nusselt number. Moreover, a comparison between the numerical result of the same problem published recently and present experimental results has been executed and discussed. It is evinced that; the heat transfer and fluid flow are affected by thickness of porous layer and be maximum at porous layer thickness (0.25L) with larger heater length(20cm) and heat flux (q= 600 Watt/m2) which is approximately (180%) for the average Nu when compared with (Hp=0.75L). Also, the effect of the increasing in heater length (δ) on the averaged heat transfer enhancement is more pronounced for large heater size and 25% of average enhancement is achieved for (δ=20cm) compared to (δ=7cm). However, the greater temperature distribution is found at Hp=2.5cm and 5cm at bottom and first quarter of the cavity (heater surface height Y=0 cm and Y=5 cm) respectively and minimum temperature at top (insulation wall Y=20 cm). Nearly, same shape for heat transfer for different case with clearly difference at small heater (δ=7cm).

Scopus Crossref
View Publication
Publication Date
Mon Jan 02 2017
Journal Name
Al-nahrain Journal For Engineering Sciences (njes)
Experimental Investigation of Forced Convection Heat Transfer and Pressure Drop in Open Cell Aluminum Fins
...Show More Authors

Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition
...Show More Authors

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of

... Show More
Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition
...Show More Authors

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic  pressure sinusoidal  amplitude  range and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Unsteady Heat Transfer Analysis on The MHD Flow of A Second Grade Fluid in A Channel with Porous Medium
...Show More Authors

The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Mathematical Modelling And Numerical Optimisation
Reconstruction of an orthotropic thermal conductivity from non-local heat flux measurements
...Show More Authors

View Publication
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector
...Show More Authors

The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Influence of Heat Transfer on MHD Oscillatory Flow for Eyring-Powell Fluid through a Porous Medium with Varying Temperature and Concentration
...Show More Authors

The aim of this research is to study the effect of heat transfer on the oscillating flow of the hydrodynamics magnetizing Eyring-Powell fluid through a porous medium under the influence of temperature and concentration for two types of engineering conditions "Poiseuille flow and Couette flow". We used the perturbation method to obtain a clear formula for fluid motion. The results obtained are illustrated by graphs.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Impact of Heat Transfer and Inclined MHD on A Non-Uniform Inclined Asymmetrical Channel with Couple Stress Fluid Through A Porous Medium
...Show More Authors

     The goal of this study is to investigate the effects of heat transfer on a non-uniform inclined asymmetrical channel with couple stress fluids via a porous medium using incline magnetohydrodynamics. The governing equation is studied while using low Reynolds approximations and long-wavelength assumptions. Mathematical expressions for (pressure gradient), (temperature), (axial velocity), (heat temperature coefficient), and (stream function). A precise set of values for the various parameters in the present model has been used. The mathematical expressions for axial velocity, stream function, pressure gradient, and pressure rise per wavelength have been derived analytically. "MATHEMATICA" is used to present the computational result

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
An Investigation into Heat Transfer Enhancement by Using Oscillating Fins
...Show More Authors

The present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Australian Journal Of Basic And Applied Sciences
CFD Simulation of Heat Transfer Augmentation in Constant Heat-Fluxed Tube fitted with Baffled Twisted Tape Inserts
...Show More Authors