Preferred Language
Articles
/
GBedRo4BVTCNdQwCiEB8
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux
...Show More Authors

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperature from testing rig are used to extract the temperature distribution, local Nusselt number and average Nusselt number. Moreover, a comparison between the numerical result of the same problem published recently and present experimental results has been executed and discussed. It is evinced that; the heat transfer and fluid flow are affected by thickness of porous layer and be maximum at porous layer thickness (0.25L) with larger heater length(20cm) and heat flux (q= 600 Watt/m2) which is approximately (180%) for the average Nu when compared with (Hp=0.75L). Also, the effect of the increasing in heater length (δ) on the averaged heat transfer enhancement is more pronounced for large heater size and 25% of average enhancement is achieved for (δ=20cm) compared to (δ=7cm). However, the greater temperature distribution is found at Hp=2.5cm and 5cm at bottom and first quarter of the cavity (heater surface height Y=0 cm and Y=5 cm) respectively and minimum temperature at top (insulation wall Y=20 cm). Nearly, same shape for heat transfer for different case with clearly difference at small heater (δ=7cm).

Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Investigation of heat transfer phenomena and flow behavior around electronic chip
...Show More Authors

Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Conjugate Heat Transfer of Laminar Air Flow in Rectangular Mini Channel
...Show More Authors

Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Energy Conversion And Management
Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid
...Show More Authors

Multi-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization o

... Show More
Scopus (72)
Crossref (70)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mass Transfer Correlations for a Rotating Cylinder Electrode under lsothermal and Controlled Heat Transfer Condition
...Show More Authors

Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.

View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Experimental Evaluation of Thermal Performance of Solar Assisted Vapor Compression Heat Pump
...Show More Authors

The thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.

The results indicated that the performance of the IX-

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
The Influence of the Preparation and Stability of Nanofluids for Heat Transfer
...Show More Authors

Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Oct 09 2021
Journal Name
Nanomaterials
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements
...Show More Authors

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
INVESTIGATION OF TWISTED TAPE TURBULATOR FOR FIRE TUBE BOILER Part I. Heat Transfer
...Show More Authors

The present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL INVESTIGATION OF INDIVIDUAL EVACUATED TUBE HEAT PIPE SOLAR WATER HEATING SYSTEMS
...Show More Authors

lar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Bag

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Heat Transfer and Thermal Expansion of Coefficient EP -(MWCNT/x-TiO2)Nanocomposites
...Show More Authors

The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an

... Show More
View Publication Preview PDF
Crossref