In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather than the whole conductance as reported in the literature. Anti-Hebbian and Hebbian (AHaH) learning rules are used to mimic the changes in memristance of the memristors. This research will concentrate on the effect of conductance on an individual MSS to simulate the nanotechnology devices of the memristors. A single synapse is presented by a couple of memristors to mimic its resistance switching. The learning circuit of artificial synapses could be used in many applications, such as image processing and neural networks, for pattern classification of synapses, represented by a map of the memeristors. These synapses are essential elements for data processing and information storage in both real and artificial neural systems.
Objectives: This study aimed to evaluate the therapeutic potential effects of ascorbic acid or and pyridoxine on diabetic renal microalbumiuria. Methods: This was a cross-sectional study on patients with diabetes mellitus at Al-Yarmouk teaching hospital from January to December 2012, Iraq-Baghdad. Twenty one patients with diabetes mellitus (D.M), 8 IDDM and 13 IDDM were selected from, the duration of disease were ranged from 2-12 years for both type (10 females and 11males) and all enrolled patients ages were ranged from 28-65years. The concentration of total protein in urine was calculated by a biuret colorimetric assay and the urine creatinine level was measured by a modified Jaffe test. Statistical analysis: results are expressed as mean
... Show MoreIn this work we prepared some schiff bases by condensation urea and benzaldehyde or its derevative ( bromo benzaldehyde or hydroxy benzaldehyde ) as ( 1 : 1 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A1 , B1 , C1 , D1 , E1 , F1 , G1 ) and ( 1 : 2 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A2 , B2 , C2 , D2 , E1 , F2 , G2 ) . The prepared compounds identified spectroscopic by infrared spectroscopy FT-IR and Thin layer chromotography T.L.C . The force constant calculated from the wave number for the carbonyl stretching from FT-IR chart and by using the following equation K = 4?2C2?'2? The change in double bond order for carbonyl deteremined in according with some past re
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More