In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather than the whole conductance as reported in the literature. Anti-Hebbian and Hebbian (AHaH) learning rules are used to mimic the changes in memristance of the memristors. This research will concentrate on the effect of conductance on an individual MSS to simulate the nanotechnology devices of the memristors. A single synapse is presented by a couple of memristors to mimic its resistance switching. The learning circuit of artificial synapses could be used in many applications, such as image processing and neural networks, for pattern classification of synapses, represented by a map of the memeristors. These synapses are essential elements for data processing and information storage in both real and artificial neural systems.
The confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreChaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
The efficiency of the Honeywords approach has been proven to be a significant tool for boosting password security. The suggested system utilizes the Meerkat Clan Algorithm (MCA) in conjunction with WordNet to produce honeywords, thereby enhancing the level of password security. The technique of generating honeywords involves data sources from WordNet, which contributes to the improvement of authenticity and diversity in the honeywords. The method encompasses a series of consecutive stages, which include the tokenization of passwords, the formation of alphabet tokens using the Meerkat Clan Algorithm (MCA), the handling of digit tokens, the creation of unique character tokens, and the consolidation of honeywords. The optimization of t
... Show MoreAutomatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show More<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More