In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather than the whole conductance as reported in the literature. Anti-Hebbian and Hebbian (AHaH) learning rules are used to mimic the changes in memristance of the memristors. This research will concentrate on the effect of conductance on an individual MSS to simulate the nanotechnology devices of the memristors. A single synapse is presented by a couple of memristors to mimic its resistance switching. The learning circuit of artificial synapses could be used in many applications, such as image processing and neural networks, for pattern classification of synapses, represented by a map of the memeristors. These synapses are essential elements for data processing and information storage in both real and artificial neural systems.
The research discusses one of the most critical issues of corporate finance which is related to asset utilization efficiency. Researchers used internal growth rate as independent variable (Proxy of asset utilization efficiency) and sustainable growth rate-dependent variable (proxy of stockholders wealth). According to these two variables, researchers formulate major hypotheses (There is no significant effect of internal growth rate on sustainable growth rate), as well as two sub-hypotheses, examine the components of major variables. Sample of Iraqi industrial companies which listed in the Iraqi stock exchange selected to test and examine main hypotheses. Result of simple and multiple regressions explain there is a significant effect of i
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreThe education, especially higher education, is an essentially factor in the progress of any society, if we consider the higher education, represents the top of the education`s pyramid which take part in developing the human resources and provide the human staff to raise the productive efficiency, and improve the social , economic level
In order to face the increasing importance of higher education, great capabilities and expenditures must be available in a continous way, such expe
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreInvestigating the strength and the relationship between the Self-organized learning strategies and self-competence among talented students was the aim of this study. To do this, the researcher employed the correlation descriptive approach, whereby a sample of (120) male and female student were selected from various Iraqi cities for the academic year 2015-2016. the researcher setup two scales based on the previous studies: one to measure the Self-organized learning strategies which consist of (47) item and the other to measure the self-competence that composed of (50) item. Both of these scales were applied on the targeted sample to collect the required data
This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreInvestment in high education is considered to be most important factors of production which the return an individual and social than economic returns found by searching the growing problem of unemployment, especially among youth graduates, where the unemployment rate in 2010 (50%) of these high rates have led to increased migration of scientific minds graduate recently, "to search for job opportunities outside Iraq for not hiring functions and this is in vain" clear "in the human and financial resources lead to structural imbalances in the Iraqi economy. When calculating the correlation coefficient between the graduates and the unemployment rate where it reached (0.21) emerged from the results of
... Show MoreThis study aimed at accounting for the role of talents management in consolidating organizational learning process at the Yemeni General Corporation For telecommunication. To achieve the objective of the study, the researcher designed a questionnaire and administered it. The sample of the study consisted of (166) employees (General Manager, Manager and Department Head). They were selected randomly out of a total Population of (291) employees during the Year 2019. The descriptive analytic approach was used t reach conclusions.
The finding of the study revealed existence of effect of talents management dimensions, all together and alone, (talents polarization, talents development, talents maintenance and ma
... Show More