Preferred Language
Articles
/
GBcASJEBVTCNdQwCnpSH
Optimization of flocculation conditions of exopolysaccharide biofloculant from Azotobacter chrococcum and its potential for river water treatment
...Show More Authors

Bacteria strain H8, which produces high amount of exopolysaccharide (EPS), was isolated from soil, and identified as strain of Azotobacter chrococcum by its biochemical /physiological characteristics, EPS was extracted, partially purified and used as bioflocculant. The biochemical analysis of the partially purified EPS revealed that it was an alginate. analysis of EPS by Fourier transform infrared spectrometry (FTIR) show that the -OH groups present in bioflocculant are clearly seen at 3433.06 cm-1, the peaks attributed to the -CH3 groups present at 2916.17 cm-1 , and some distinct peaks such as carboxyl group showed strong absorption bands at 1604.66 cm-1, 1411.80 cm-1 and 1303.79 cm-1 indicate the chemical structure of alginate. The effects of various salts, temperature, bioflocculant dosage and pH on the flocculation activity (turbidity removal) were evaluated. When various salts, were used as cation, results showed that CaCl2 and ZnSO4.7H2O enhanced flocculation activity 57.3% and 55.3% respectively compared with CuSO4 and MnCl2 which was 37.5% and 10 % respectively. The bioflocculant had strong thermal stability within the range of 20-100 °C, and the flocculating activity was over 50 %, the maximum flocculation activity was observed at an optimum bioflocculant dosage of 0.25 mL /10 mL (60.8%)., the bioflocculant had highest flocculating activity at alkaline condition pH 10 (77.7 %). After optimization of flocculation conditions, bioflocculant produced was applied to deal with river water and the flocculating activity (turbidity removal) increased to 81%.

Publication Date
Fri Mar 13 2020
Journal Name
Plant Archives
Azotobacter chroococcum and Rhizobium leguminosarum inoculums survival in soil and efficiency in enhancing plant growth
...Show More Authors

Publication Date
Sun Oct 15 2023
Journal Name
Bionatura
Effect of Partial Drip Irrigation Methods on Soil Moisture and Water Potential Distribution, Growth Characteristics and Yield of Maize
...Show More Authors

A field experiment was conducted during the autumn of 2021 at the Agricultural Research Department station / Abu Ghraib to evaluate the soil moisture, water potential distribution, and growth factors of maize crops under alternating and constant partial drip irrigation methods. In the experiment, two irrigation systems were used, surface drip irrigation (DI) and subsurface irrigation (SD); under each irrigation system, five irrigation methods were: conventional irrigation (CI), and 75 and 50% of the amount of water of CI of each of the alternating partial irrigation APRI75 and APRI50 and the constant partial irrigation FPRI75 and FPRI50 respectively. The results showed that the water depth for conventional irrigation (C1) was 658.3

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Iraqi Journal Of Agricultural Sciences, 2018, 49(2), Pp. 179–187
Estimation of some genetic parameters for grain yield and its components of maize under watered and water stress
...Show More Authors

Scopus (8)
Scopus
Publication Date
Sun Sep 02 2012
Journal Name
Baghdad Science Journal
Determination of optimal conditions for laccase production by Pleurotus ostreatus using sawdust as solid medium and its use in phenol degradation
...Show More Authors

The ability of four local fungal isolates for extracellular laccase production has been tested with five grams 1:1(w/v) humidified sawdust as substrate in mineral salt medium. After 21 day of incubation at 25±1 ? C and using one mycelial plug (5mm), higher level of laccase activity (0.15U/ml) and specific activity (15U/mg) were observed by Pleurotus ostreatus in comparison with other fungal isolates. The results of optimum conditions for laccase production from selected isolate showed that, the maximum laccase activity (0.55U/ml) and specific activity (55U/mg) were obtained at moisture ratio 1:3 (w/v), using 3 mycelial plugs (5 mm), after 15 days incubation period at 25±1 ? C. The results of phenol degradation by crud laccase revealed th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Effect of Magnetic Water Treatment on Prevention of CaCO3 Scales
...Show More Authors

Permanent magnets of different intensities were used to investigate the effect of a magnetic field in the process of preventing deposits of calcium carbonate. The magnets were fixed on the water line from the tap outside. Then heating a sample of this water in flasks and measuring the amount of sediment in a manner weighted differences. These experiments comprise to the change of the velocity of water flow, which amounted to (0.5, 0.75, 1) m/sec through the magnetic fields that are of magnetic strength (2200, 6000, 9250, 11000) Gauss, and conduct measurements, tests and compare them with those obtained from the use of ordinary water.The results showed the effectiveness of magnetic treatment in reducing the rate of deposition of calcium carb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Infection And Drug Resistance
Virulence and antimicrobial resistance of Escherichia coli isolated from Tigris River and children diarrhea
...Show More Authors

Scopus (14)
Scopus
Publication Date
Tue Feb 22 2022
Journal Name
Watre
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Crossref (10)
Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Water
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Water Resource And Protection
Seasonal Variations of Some Ecological Parameters in Tigris River Water at Baghdad Region, Iraq
...Show More Authors

View Publication
Crossref (33)
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Brackish Water Desalination Coupled With Wastewater Treatment and Electricity Generation
...Show More Authors

A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were

... Show More
View Publication Preview PDF