Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train the model contains 1365 fundus images from the ROP screening. This dataset was gathered from the Private Clinic Al-Amal Eye center in Baghdad, Iraq. The models above are ensemble through voting classifier techniques to increase the performance. The proposed method had an overall accuracy of 88.82 percent when employing the voting classifier. On the other hand, EfficientNetB5 has outperformed other models in terms of accuracy with 87.27%.
The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreThe research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreBackground: Educational environment is one of the most important determinants of an effective curriculum. Students' perceptions of their educational environment have a significant impact on their behavior and academic progress. Objective: 1. To identify students’ perception to the educational environment.2. To identify any gender or class level differences in the students’ perception.Type of the study: This is a descriptive cross-sectional studyMethodology: The study was carried out on convenient sample of 150 students of 2nd and 5th grade. This study was done in Al Kindy Medical College, Baghdad, Iraq and conducted during the period from the 1st of October 2013 till the end of March 2014, by using DREEM questionnaire a validated uni
... Show MorePurpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology: