Preferred Language
Articles
/
GBZnhowBVTCNdQwCbf3Q
Utilizing Hopfield Neural Network for Pseudo-Random Number Generator
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
On The Nearby-Tip Strain Investigation and Failure-Propability Evaluation for Impacted Thin Plates Using the 2-Random-Variables Multi-Canonical-Based Joint Propability Distributions
...Show More Authors

The study of the validity and probability of failure in solids and structures is highly considered as one of the most incredibly-highlighted study fields in many science and engineering applications, the design analysts must therefore seek to investigate the points where the failing strains may be occurred, the probabilities of which these strains can cause the existing cracks to propagate through the fractured medium considered, and thereafter the solutions by which the analysts can adopt the approachable techniques to reduce/arrest these propagating cracks.In the present study a theoretical investigation upon simply-supported thin plates having surface cracks within their structure is to be accomplished, and the applied impact load to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
Computer And Information Science 2009
The Stochastic Network Calculus Methodology
...Show More Authors

Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Design of PV Solar Energy Generator using MPPT Technique to Control Single Input/Multiple Outputs (DC-DC) Converter
...Show More Authors

The paper presents the design of a system consisting of a solar panel with Single Input/Multiple Outputs (DC-DC) Buck Converter by using Simulink dialogue box tools in MATLAB software package for simulation the system. Maximum Power Point Tracking (MPPT) technique depending on Perturb and Observe (P&O) algorithm is used to control the output power of the converter and increase the efficiency of the system. The characteristics of the MSX-60 PV module is chosen in design of the system, whereas the electrical characteristics (P-V, I-V and P-I curves) for the module are achieved, that is affected by the solar radiation and temperature variations. The proposed design module has been found to be stable for any change in atmospheric tempera

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Science And Research (ij
Mathematical Models for Predicting of Organic and Inorganic Pollutants in Diyala River Using AnalysisNeural Network
...Show More Authors

Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte

... Show More
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Extraction Drainage Network for Lesser Zab River Basin from DEM using Model Builder in GIS
...Show More Authors

ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 05 2013
Journal Name
Eng. & Tech. Journal
Snubber Network Design for Triac Driving Single – Phase Industrial Heater by Applying Fuzzy Logic Method
...Show More Authors

Power switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin

... Show More
View Publication Preview PDF