Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by response surface methodology (RSM). According to the results, nickel foam made an excellent choice as cathode material. The pH value was adjusted at 3 and the airflow at 10 L/h for all experiments. It was found that the optimal conditions were current density of 4.23 mA/cm2, Fe2+ dosage of 0.1 mM, and time of 5 h to obtain the removal rates of phenol and chemical oxygen demand (COD) of 81.335% and 79.1%, respectively. The results indicated that time had the highest effect on the phenol and COD removal efficiencies, while the impact of current density was the lowest. The high R2 value of the model equation (98.03%) confirmed its suitability.
A new 5‐fluorouracil–naproxen conjugate is synthesized as a mutual prodrug for targeting cancer tissues. The structure of the target compound and their intermediate are characterized by their melting point, IR, 1H NMR, 13C NMR, and elemental microanalysis. The cytotoxic activity is preliminarily evaluated using nonsmall lung cancer CRL‐2049, human breast cancer CAL‐51, and one type of normal cell line; rat embryo fibroblast cell line. The synthesized compound shows a good cytotoxic effect at the cancer cell and no significant effect at rat embryo fibroblast cell line.
Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreSteady natural and mixed convection flow in a square vented enclosure filled with water-saturated aluminum metal foam is numerically investigated. The left vertical wall is kept at constant temperature and the remaining walls are thermally insulated. Forced convection is imposed by providing an inlet at cavity bottom surface, and a vent at the top surface. Natural convection takes place due to the temperature difference inside the enclosure. Darcy-Brinkman-Forchheimer model for fluid flow and the two-equation of the local thermal non-equilibrium model for heat flow was adopted to describe the flow characteristics within the porous cavity. Numerical results are obtained for a wide range of width of the inlet as a fraction
... Show MoreA specific, sensitive and simple method was used for the determination of: vitamin B9 (Folic acid) in pure and pharmaceutical formulations using continuous flow injection analysis. The method is based on formation of ion pair compound between folic acid and ammonium molybdate in an aqueous medium to obtain a gray precipitate complex, using homemade; Ayah-6SX1-ST-2D solar cell CFI Analyzer. Optimum parameters was studied to increase the sensitivity for developed method. The linear range for the calibration graph was 0.01-0.6 mMol.L-1 of vitamin B9 and LOD was 131.994 ng/sample with correlation coefficient ( r ) of 0.9810, RSD% was lower than 0.1%, (n=9) for the determination of vitamin B9 at concentration (0.07and 0.5) mMol.L-1 respectiv
... Show MoreThe aim of this study is for testing the applicability of Ramamoorthy and Murphy method for identification of predominant pore fluid type, in Middle Eastern carbonate reservoir, by analyzing the dynamic elastic properties derived from the sonic log. and involving the results of Souder, for testing the same method in chalk reservoir in the North Sea region. Mishrif formation in Garraf oilfield in southern Iraq was handled in this study, utilizing a slightly-deviated well data, these data include open-hole full-set logs, where, the sonic log composed of shear and compression modes, and geologic description to check the results. The Geolog software is used to make the conventional interpretation of porosity, lithology, and saturation. Also,
... Show MorePrograms and performance budget represents a sophisticated method of public budget numbers, which includes all allocations to be determined for each job or activity within a government entity, which is analyzed according to their needs and costs, and this method can be applied using one of the cost accounting techniques, which is the technique of analyzing the value chain that reduces costs by avoiding activities that do not add value and enhance activities that add value to the economic entity, the current research aims to develop the budget system in government entity by using the budget of programs and performance as a tool for planning and monitoring events and activities, thereby reducing the waste of public money by reducing unnecessa
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
Copper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.